دراسة بعض فصول الدوال المنتظمة ومتعددة التكافؤ
DOI:
https://doi.org/10.37375/sjfssu.v4i1.1671الملخص
We focus on the properties of some famous analytical functions. We introduce the classes of of p-Valent β-uniformly Starlike functions of order α and p -Valent β-uniformly Convex functions of order α.` We come out with new characterization theorems and closure theorems for functions belonging to these classes. Also, we gained radius of p -Valent convexity for functions belonging to the class p-Valent β-uniformly Convex functions of order α. We insert some notes to explain the evidence of our work.
In this present paper, we are concerned with the properties of some famous analytical functions. We introduce and study the classes of p-Valent β-uniformly Starlike functions of order α and p -Valent β-uniformly Convex functions of order α and obtain some characterization theorems and closure theorems for functions belonging to these classes. Also, by this study we come out with many necessary and sufficient characterization conditions. Also we obtain radius of p -Valent convexity for functions belonging to the class p-Valent β-uniformly Convex functions of order α. In last, a remark is listed to show the evidence of the new theorems.
المراجع
Alharayzeh, M. Y. and Ghanim, F. (2022). New Subclass of K-Uniformly Univalent Analytic Functions with Negative Coefficients Defined by Multiplier Transformation, Hindawi journal, 1-6
Al-Kharsani, H. A. and Al-Hajiry, S. S. (2008). A note on certain inequalities for p- valen functions, J. Ineq. Pure Appl. Math., no. 3, Art. 90, 1-6.
Aouf, M. K. Hossen, H. M. and Srivastava, H. M. (2000). Some families of multivalent functions, Comput. Math. Appl.,39-48.
Aouf, M. K. Mostafa, A.O. and Hussain, A. A. (2016). Certain Subclass of p-Valent Uniformly Starlike and Convex Functions Defined by Convolution, Int. J. Open Problems Complex Anal., no. 2, 36-60.
Kanas, S. (1999). Uniformly α- convex functions, Internat. J. Appl. Math., no. 3, 305-310.
Kanas, S and Srivastava, H. M. (2000). Linear operators associated with k-uniformly convex functions, Integral Transform. Spec. Funt., 121-132.
Kanas, S. and Wisniowska, A. (1999). Conic regions and k-uniform convexity, J. Comput. Appl. Math.,
-336.
Kanas, S. and Wisniowska, A. (2000). Conic regions and k-starlike functions, Rev. Roumaine Math. Pures Appl., 647-657.
Marouf, M. S. (2009), A subclass of multivalent uniformly convex functions associated with Dziok-Srivastava linear operator, Int. J. Math. Anal., no. 22, 1087-1100.
Owa, S. (1985). On certain classes of p- valent functions with negative coefficients, Simon Stevin, 385-402.
Patil, B. A. and Thakare, N. K. (1983). On convex and extreme point of p -valent starlike and convex classes with application, Bull. Math. Soc. Sci. Math. R. S. Roumanie (N. S.) ,no. 75, 145-160.
Salim, T. O. Marouf, M. S. and Shenan, J. M. (2011). A subclass of multivalent uniformly convex functions associated with generalized Sălăgean and Rusheweyh differential operators, Acta Univ. Apulensis, 289-300.
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 المجلة العلمية لكلية العلوم

هذا العمل مرخص بموجب Creative Commons Attribution 4.0 International License.







