Theoretical Study of Electron – Phonon Interactions Using Linear Response Theory

Authors

  • Nadir Omar Driza Department of Physics, Universtiy of Benghazi, faculty of Arts and Sciences, Elmarj, Libya
  • Asma R. S. Elgade Department of Physics, Universtiy of Benghazi, faculty of Arts and Sciences, Elmarj, Libya
  • Rafa S. A. Hamad Department of Physics, Universtiy of Benghazi, faculty of Arts and Sciences, Elmarj, Libya
  • Hanan M. A. Ali Department of Physics, Universtiy of Benghazi, faculty of Arts and Sciences, Elmarj, Libya

DOI:

https://doi.org/10.37375/sjfssu.v5i2.3351

Keywords:

Electron, Phonon interactions, linear Response theory, transition metal

Abstract

This work presents a theoretical investigation of electron–phonon interactions in transition metals using linear response theory, with the aim of evaluating the agreement between ab initio calculations and experimental data. The study focuses on aluminium (Al), molybdenum (Mo), and niobium (Nb), utilizing a wave-vector-dependent approach to calculate the electron–phonon coupling. The linear muffin-tin orbital (LMTO) method combined with the local density approximation (LDA) was employed to evaluate the screening of the one-electron potential within the framework of linear response theory. From these calculations, key physical parameters, including electron–phonon coupling strengths and transport coefficients, were extracted. The theoretical results show a strong correspondence with experimental measurements, demonstrating the reliability of the linear response approach in capturing electron–phonon coupling behaviour in these metals. These findings support the broader applicability of first-principles methods in the study of phonon-mediated transport phenomena in metallic systems.

References

Allen, P. B. (1978). New method for solving Boltzmann’s equation for electrons in metals. Physical Review B, 17(8), 3725–3734. https://doi.org/10.1103/PhysRevB.17.3725

Allen, P. B. (1983). A tetrahedron method for doubly constrained Brillouin zone integrals. physica status solidi (b), 120(2), 629–633. https://doi.org/10.1002/pssb.2221200209

Andersen, O. K. (1975). Linear methods in band theory. Physical Review B, 12(8), 3060–3083. https://doi.org/10.1103/PhysRevB.12.3060

Asada, T., & Terakura, K. (1983). Theoretical study of nuclear spin lattice relaxation in HCP transition metals. *Journal of Magnetism and Magnetic Materials, 31-34*, 45–46. https://doi.org/10.1016/0304-8853(83)90145-2

Butler, W. H., Pinski, F. J., & Allen, P. B. (1979). Phonon linewidths and electron-phonon interaction in Nb. Physical Review B, 19(8), 3708–3715. https://doi.org/10.1103/PhysRevB.19.3708

Chung, D. D. L. (2017). Carbon composites: Composites with carbon fibers, nanofibers and nanotubes (2nd ed.). Butterworth-Heinemann.

Cohen, R. E., Pickett, W. E., & Krakauer, H. (1990). Theoretical determination of strong electron-phonon coupling in YBa₂Cu₃O₇. Physical Review Letters, 64(22), 2575–2578. https://doi.org/10.1103/PhysRevLett.64.2575

Crabtree, G. W., Dye, D. H., Karim, D. P., & Koelling, D. D. (1979). Anisotropic many-body effects in the quasiparticle velocity of Nb. Physical Review Letters, 42(6), 390–393. https://doi.org/10.1103/PhysRevLett.42.390

Dacorogna, M. M., & Cohen, M. L. (1985). Self-consistent calculation of the q dependence of the electron-phonon coupling in aluminum. Physical Review Letters, 55(8), 837–840. https://doi.org/10.1103/PhysRevLett.55.837

Driza, N., Blanco-Canosa, S., Bakr, M., Soltan, S., Khalid, M., Mustafa, L., Kawashima, K., Christiani, G., Habermeier, H.-U., Khaliullin, G., Ulrich, C., Le Tacon, M., & Keimer, B. (2012). Long-range transfer of electron–phonon coupling in oxide superlattices. Nature Materials, 11(8), 675–681. https://doi.org/10.1038/nmat3378

Gaspari, G. D., & Gyorffy, B. L. (1972). Electron-phonon interactions, d resonances, and superconductivity in transition metals. Physical Review Letters, 28(13), 801–805. https://doi.org/10.1103/PhysRevLett.28.801

Geerk, J., Gurvitch, M., McWhan, D. B., & Rowell, J. M. (1982). Electron tunneling into Nb/Al multilayers and into Nb with Al overlayers. *Physica B+C, 109-110*, 1775–1784. https://doi.org/10.1016/0378-4363(82)90200-5

Gompf, F., Richter, W., Scheerer, B., & Weber, W. (1981). Phonons in superconducting Nb-Zr alloys: Experiment and theory. *Physica B+C, 108*(1-3), 1337–1338. https://doi.org/10.1016/0378-4363(81)90967-0

Haque, E., & Hossain, M. A. (2017). First-principles study of mechanical, thermodynamic, transport and superconducting properties of Sr₃SnO. Journal of Alloys and Compounds, 730, 279–283. https://doi.org/10.1016/j.jallcom.2017.09.299

Khim, Z. G., Burnell, D., & Wolf, E. L. (1981). Equivalence of optimized conventional and proximity electron tunnelling (PET) for niobium. Solid State Communications, 39(1), 159–161. https://doi.org/10.1016/0038-1098(81)91069-3

Liechtenstein, A. I., Mazin, I. I., Rodriguez, C. O., Jepsen, O., & Andersen, O. K. (1991). Structural phase diagram and electron-phonon interaction in Ba₁₋ₓKₓBiO₃. Physical Review B, 44(10), 5388–5395. https://doi.org/10.1103/PhysRevB.44.5388

Mehl, M. J., Papaconstantopoulos, D. A., & Singh, D. J. (2001). Effects of C, Cu and Be substitutions in superconducting MgB₂. Physical Review B, 64(14), 140509. https://doi.org/10.1103/PhysRevB.64.140509

Papaconstantopoulos, D. A., Boyer, L. L., Klein, B. M., Williams, A. R., Morruzzi, V. L., & Janak, J. F. (1977). Calculations of the superconducting properties of 32 metals with Z ≤ 49. Physical Review B, 15(9), 4221–4226. https://doi.org/10.1103/PhysRevB.15.4221

Rainer, D., & Sauls, J. A. (1992). Strong coupling theory of superconductivity. In S. K. Joshi, C. N. R. Rao, & S. V. Subramanyam (Eds.), Superconductivity: From basic physics to the latest developments (pp. 45–78). World Scientific. https://doi.org/10.1142/9789814503891_0002

Ranong, N. N., Natkunlaphat, N., & Pinsook, U. (2023). Simplified models for electron-phonon interactions in materials: Insights from theory and experimental data. Journal of Physics: Conference Series, 2653(1), 012060. https://doi.org/10.1088/1742-6596/2653/1/012060

Sahni, V., Bohnen, K.-P., & Harbola, M. K. (1988). Analysis of the local-density approximation of density-functional theory. Physical Review A, 37(6), 1895–1906. https://doi.org/10.1103/PhysRevA.37.1895

Salunke, H. G., Mittal, R., Das, G. P., & Chaplot, S. L. (1997). Electron–phonon coupling and related properties of C16-structured Zr₂Ni intermetallics. Journal of Physics: Condensed Matter, 9(46), 10137–10143. https://doi.org/10.1088/0953-8984/9/46/012

Savrasov, S. Y., & Andersen, O. K. (1996). Linear-response calculation of the electron-phonon coupling in doped CaCuO₂. Physical Review Letters, 77(21), 4430–4433. https://doi.org/10.1103/PhysRevLett.77.4430

Savrasov, S. Y. (1992). Linear-response calculations of lattice dynamics using muffin-tin basis sets. Physical Review Letters, 69(19), 2819–2822. https://doi.org/10.1103/PhysRevLett.69.2819

Savrasov, S. Y., & Savrasov, D. Y. (1992). Full-potential linear-muffin-tin-orbital method for calculating total energies and forces. Physical Review B, 46(19), 12181–12195. https://doi.org/10.1103/PhysRevB.46.12181

Savrasov, S. Y., & Savrasov, D. Y. (1996). Electron-phonon interactions and related physical properties of metals from linear-response theory. Physical Review B, 54(23), 16487–16501. https://doi.org/10.1103/PhysRevB.54.16487

Shang, H. (2021). The Sternheimer approach to all-electron real-space density-functional perturbation theory with atomic basis set. AIP Advances, 11(1), 015224. https://doi.org/10.1063/5.0029361

Van Loon, E. G. C. P., Rösner, M., Schönhoff, G., Katsnelson, M. I., & Wehling, T. O. (2018). Competing Coulomb and electron–phonon interactions in NbS₂. npj Quantum Materials, 3(1), 32. https://doi.org/10.1038/s41535-018-0105-4

Venderbosch, R. (2022). Analysis of a generalised local-density approximation in density-functional theory [Bachelor's thesis, Eindhoven University of Technology].

Welakuh, D. M., Flick, J., Ruggenthaler, M., Appel, H., & Rubio, A. (2022). Frequency-dependent Sternheimer linear-response formalism for strongly coupled light–matter systems. Journal of Chemical Theory and Computation, 18(7), 4354–4365. https://doi.org/10.1021/acs.jctc.2c00076

Winter, H. (1981). Application of linear response theory to electron-phonon coupling. Journal of Physics F: Metal Physics, 11(11), 2283–2296. https://doi.org/10.1088/0305-4608/11/11/011

Wolf, E. L. (2012). Principles of electron tunneling spectroscopy (2nd ed.). Oxford University Press.

Xie, S. R., Quan, Y., Hire, A. C., Deng, B., DeStefano, J. M., Salinas, I., Shah, U. S., Fanfarillo, L., Lim, J., Kim, J., Stewart, G. R., Hamlin, J. J., Hirschfeld, P. J., & Hennig, R. G. (2022). Machine learning of superconducting critical temperature from Eliashberg theory. npj Computational Materials, 8(1), 14. https://doi.org/10.1038/s41524-021-00666-7

Downloads

Published

27-10-2025

How to Cite

Driza, N. O., Elgade, A. R. S., Hamad, R. S. A., & Ali, H. M. A. (2025). Theoretical Study of Electron – Phonon Interactions Using Linear Response Theory . Scientific Journal for Faculty of Science-Sirte University, 5(2), 45–53. https://doi.org/10.37375/sjfssu.v5i2.3351