Effect of Exogenous Application of Nicotinic Acid on Genotypes of durum wheat (Triticum aestivum L.) under salt stress.

Authors

  • Sami M. Salih Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Al-Bayda, Libya
  • Ahmed A. Abdulrraziq Biology Department, Education Faculty, Omar Al-Mukhtar University, Al-Bayda, Libya

DOI:

https://doi.org/10.37375/sjfssu.v4i1.2680

Abstract

Two experiments were conducted (laboratory and pot). The laboratory experiment represented the tolerance of ten durum wheat genotypes (ACSAD) to levels (20, 30, 40%) of seawater. The pot experiment evaluated the efficiency of foliar spraying of nicotinic acid for three election genotypes of durum wheat (ACSAD 1671, 1711, and 1765), Under seawater levels (20, 30%). The results of the laboratory experiment showed that revealed significant (p < 0.05) differences in the genotypes’ response to salinity, the genotypes' (1671, 1711and 1765), were superior in recording the best average germination percentage and seedling length compared to the other genotypes. The results of the pot experiment showed, after 80 days of sowing, under seawater irrigation conditions, decreases in (Plant height, Leaf area /plant, Spike length, number of spikes/plant, number of grains/spike, chlorophyll a, chlorophyll b, carotenoids, and total pigments) of the three durum wheat genotypes (ACSAD), compared to control. In contrast, foliar application of Nicotinic acid led to a significant decrease in a negative effect resulting from salinity for all vegetative growth parameters and the contents of photosynthetic pigments, especially with low concentrations of seawater. The (1671) genotype performed better than the (1711and 1765) genotypes in concern to high averages for all studied traits, under salinity and spraying with Nicotinic acid.

References

Ahmed, H. G. M. D., Zeng, Y., Yang, X., Faisal, A., Fatima, N., Ullah, A., Hussain, G. S., Iftikhar, M., and Anwar, M. R. (2024). Heritability and Genotypic Association Among Seedling Attribute Against Salinity Stress Tolerance in Wheat Genotypes for Sustainable Food Security. Journal of Crop Health, 1-13.‏

Ain, Q. U., Hussain, H. A., Zhang, Q., Kamal, F., Charagh, S., Imran, A., Hussain, S., and Bibi, H. (2024). Deciphering the Role of Nanoparticles in Stimulating Drought and Salinity Tolerance in Plants: Recent Insights and Perspective. Journal of Plant Growth Regulation, 1-26.

Alharbi, K., Al-Osaimi, A. A., & Alghamdi, B. A. (2022). Sodium chloride (NaCl)-induced physiological alteration and oxidative stress generation in Pisum sativum (L.): A toxicity assessment. ACS omega, 7(24), 20819-20832.‏

Al-Jboory, W. S. H., & Al-Sharea, A. O. E. (2022). Study the effect of spraying of Vitamin B3 and the amino acid Glycine and their overlap on some growth indicators of Apium graveolens L. Bulletin of National Institute of Health Sciences, 140(1), 1185-1199.‏

Bashasha, J. A., El-Mugrbi, W. S., & Imryed, Y. F. (2021). Effect of magnetic treatment in improve growth of three wheat cultivars irrigated with seawater. Multidiscip. Sci. Adv. Technol, 1, 24-32.‏

Berglund, T., Wallström, A., Nguyen, T. V., Laurell, C., & Ohlsson, A. B. (2017). Nicotinamide; antioxidative and DNA hypomethylation effects in plant cells. Plant Physiology and Biochemistry, 118, 551-560.‏

Cabusora, C. C. (2024). Developing climate-resilient crops: adaptation to abiotic stress-affected areas. Technology in Agronomy, (tia-0024-0002), 1-12.‏

Çatak, J., & Yaman, M. (2019). Research Article Determination of Nicotinic Acid and Nicotinamide Forms of Vitamin B3 (Niacin) in Fruits and Vegetables by HPLC Using Postcolumn Derivatization System. Pakistan Journal of Nutrition, 18(6), 563-570.‏

Chi, Y. X., Yang, L., Zhao, C. J., Muhammad, I., Zhou, X. B., & De Zhu, H. (2021). Effects of soaking seeds in exogenous vitamins on active oxygen metabolism and seedling growth under low-temperature stress. Saudi Journal of Biological Sciences, 28(6), 3254-3261.‏

Choudhary, S., Wani, K. I., Naeem, M., Khan, M. M. A., & Aftab, T. (2023). Cellular responses, osmotic adjustments, and role of osmolytes in providing salt stress resilience in higher plants: Polyamines and nitric oxide crosstalk. Journal of Plant Growth Regulation, 42(2), 539-553.‏

El Sabagh, A., Islam, M. S., Skalicky, M., Ali Raza, M., Singh, K., Anwar Hossain, M., Mahboob, W., Iqbal, M, A., Ratnasekera, D., Singhal, R, K., Ahmed, S., Kumari, A., Wasaya, A., Sytar, O., Brestic, M., ÇIG, F., Erman, M., Ur Rahman, M, H., Ullah, N., and Arshad, A. (2021). Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies. Frontiers in Agronomy, 3, 661932.‏

El-Bassiouny, H. M. S. (2005). Physiological responses of wheat to salinity alleviation by nicotinamide and tryptophan. International Journal of Agriculture & Biology, vol(7), 4, pp 653–659.

Elfanah, A. M. S., Darwish, M. A., Selim, A. I., Shabana, M. M. A., Elmoselhy, O. M. A., Khedr, R. A., Ali, A, M., and Abdelhamid, M. T. (2023). Spectral reflectance indices’ performance to identify seawater salinity tolerance in bread wheat genotypes using genotype by yield* trait biplot approach. Agronomy, 13(2), 353.‏

Farooq, T. H., Bukhari, M. A., Irfan, M. S., Rafay, M., Shakoor, A., Rashid, M. H. U., Lin, Y., Saqib, M., Malik, Z., and Khurshid, N. (2022). Effect of Exogenous Application of Nicotinic Acid on Morpho-Physiological Characteristics of Hordeum vulgare L. under Water Stress. Plants, 11(18), 2443.‏

Gakière, B., Hao, J., de Bont, L., Pétriacq, P., Nunes-Nesi, A., & Fernie, A. R. (2018). NAD+ biosynthesis and signaling in plants. Critical Reviews in Plant Sciences, 37(4), 259-307.‏

Gasperi, V., Sibilano, M., Savini, I., & Catani, M. V. (2019). Niacin in the central nervous system: an update of biological aspects and clinical applications. International journal of molecular sciences, 20(4), 974.‏

Hmissi, M., Chaieb, M., & Krouma, A. (2023). Differences in the physiological indicators of seed germination and seedling establishment of durum wheat (Triticum durum Desf.) cultivars subjected to salinity stress. Agronomy, 13(7), 1718.‏

Hussein, M. M., Faham, S. Y., & Alva, A. K. (2014). Role of foliar application of nicotinic acid and tryptophan on onion plants response to salinity stress. Journal of Agricultural Science, 6(8), 41-51.

Khanishova, M. A., Tagiyeva, K. R., & Azizov, I. V. (2024). Effect of NaCl on Physiological Performance and Yield of Wheat Hybrids. Advanced Studies in Biology, 16(1), 1-12.

Khudair, T. Y., Albbas, F. A. A., & Kreem, K. A. A. (2019). Effect of Niacin (Nicotinamide) and Humic Acid on Growth and Chemical Traits of Pelargonium hortorum L. Indian J. Ecol., 46, 173-178.‏

Kononenko, N. V., Lazareva, E. M., & Fedoreyeva, L. I. (2023). Mechanisms of Antioxidant Resistance in Different Wheat Genotypes under Salt Stress and Hypoxia. International Journal of Molecular Sciences, 24(23), 16878.‏

Kwon, O. K., Mekapogu, M., & Kim, K. S. (2019). Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Horticulture, Environment, and Biotechnology, 60, 831-839.

Mahboob, W., Rizwan, M., Irfan, M., Hafeez, O. B. A., Sarwar, N., Akhtar, M., Munir, M., Rani, R., El Sabagh, A., and Shimelis, H. (2023). Salinity Tolerance In Wheat: Responses, Mechanisms And Adaptation Approaches. Applied Ecology & Environmental Research, 21(6).‏

Metzner, H., Rau, H., & Senger, H. (1965). Untersuchungen zur synchronisierbarkeit einzelner pigmentmangelmutanten von Chlorella. Planta, 65(2), 186-194.

Mokhtarpour, H., Teh, C.B., Saleh, G., Selamat, A. B., Asadi, M. E. and Kamkar, B. (2010). Nondestructive estimation of maize leaf area, fresh weight, and dry weight using leaf length and leaf width. Communications in Biometry and Crop Science. 5(1):19-26.

Nassar, R. M., Kamel, H. A., Ghoniem, A. E., Alarcón, J. J., Sekara, A., Ulrichs, C., & Abdelhamid, M. T. (2020). Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants, 9(2), 237.

Noctor, G., Hager, J., & Li, S. (2011). Biosynthesis of NAD and Its Manipulation in Plants. In Advances in botanical research Vol. 58, pp. 153-201, Academic Press.‏

Ramadan, E., Freeg, H. A., Shalaby, N., Rizk, M. S., Ma, J., Du, W., ‏Ibrahim, O. M., Alwutayd, K. M., AbdElgawad, H., Jo, I., and El-Tahan, A. M. (2023). Response of nine triticale genotypes to different salt concentrations at the germination and early seedling stages. PeerJ, 11, e16256.‏

Salih, S. M., Abdulrraziq, A. A. (2023). The effects of indole butyric acid and seaweed (Posidonia oceanic) and their mixture in improving photosynthetic pigments of salt-stressed wheat cultivar (Marjawi). Scientific Journal for Faculty of Science-Sirte University, 3(1), 139-144.

Salih, S. M., Abdulrraziq, A. A., & Abdulwhab, O. A. (2023). The Evaluation of Tolerance of Six Triticum aestivum Genotypes to Salt Stress. Scientific Journal for Faculty of Science-Sirte University, 3(2), 105-109.‏

Sarkar, A. K., & Sadhukhan, S. (2023). Impact of Salinity on Growth and Development of Plants with the central focus on Glycophytes: an overview. Bull. Env. Pharmacol. Life Sci, 12, 235-266.‏

Sghayar, S., Debez, A., Lucchini, G., Abruzzese, A., Zorrig, W., Negrini, N., Morgutti, S., Abdelly, C., Sacchi, G. A., Pecchioni, N., and Vaccino, P. (2023). Seed priming mitigates high salinity impact on germination of bread wheat (Triticum aestivum L.) by improving carbohydrate and protein mobilization. Plant Direct, 7(6), e497.‏

Sharma, S., Joshi, J., Kataria, S., Verma, S. K., Chatterjee, S., Jain, M., Pathak, K., Rastogi, A., and Brestic, M. (2020). Regulation of the Calvin cycle under abiotic stresses: An overview. Plant life under changing environment, 681-717.

Singh, D. (2022). Juggling with reactive oxygen species and antioxidant defense system–A coping mechanism under salt stress. Plant Stress, 5, 100093.‏

Slama, I., Abdelly, C., Bouchereau, A., Flowers, T., & Savouré, A. (2015). Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Annals of botany, 115(3), 433-447.‏

Stojšin, M. M., Petrović, S., Jocković, B., Banjac, B., Zečević, V., Stefanović, V. M., & Perišić, V. (2023). Utilizing the Stability of Yield Parameters as a Technique to Select Salinity-Tolerant Wheat Genotypes. Contemporary Agriculture, 72(1-2), 64-74.‏

Tomar, R. S., Khamba, S., Kaushik, S., & Mishra, R. K. (2018). Role of Vitamins in Plant Growth and their Impact on Regeneration of Plants under Invitro Condition. International Journal for Research in Applied Science and Engineering Technology, 6(3), 423-426.‏

Yanagi, M. (2024). Climate change impacts on wheat production: Reviewing challenges and adaptation strategies. Advances in Resources Research, 4(1), 89-107.‏

Yaseen, F. K., Toma, R. S., & Carbonera, D. (2017). The effects of vitamins on micropropagation of Desiree and Mozart potatoes (Solanum tuberosum L.). Science Journal of University of Zakho, 5(1), 53-56.‏

Downloads

Published

2024-04-17

How to Cite

Salih, S. M., & Abdulrraziq, A. A. (2024). Effect of Exogenous Application of Nicotinic Acid on Genotypes of durum wheat (Triticum aestivum L.) under salt stress. Scientific Journal for Faculty of Science-Sirte University, 4(1), 109–116. https://doi.org/10.37375/sjfssu.v4i1.2680