Proteus genus sensitivity testing for various classes of antibiotics.


  • Ahmed A. Abdulrraziq Biology Department, Education Faculty, Omar Al-Mukhtar University, Al-Bayda, Libya.
  • Sami M. Salih Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Al-Bayda, Libya



Proteus genus, Aminoglycosides, Tetracyclins, Penicillin, Macrolides, Cephalosporins.


Proteus genus has become one of the most common pathogens in Libya, with high antibiotic resistance, which can lead to medical problems in many situations in hospitals. However, there is no comprehensive study of the sensitivity and resistance of Proteus pathogenic to antibiotics in Libya.  Therefore, the present study was conducted with the aim to test the sensitivity and resistance of two Proteus isolates (UTI and diarrhea) to antibiotics.  The Kirby-Bauer (disc diffusion) method was used to investigate the effects of eight Antibiotics, belonging to different classes. Aminoglycosides represented by Gentamicin,  Tetracyclins class represented by Doxycycline 30ug, Penicillin class represented by Ampicillin 10ug, Macrolides class represented by (Azithromycin 15ug, Erythromycin 15ug), and Cephalosporins class represented by (Ceftriaxone 30ug, Ceftazidime 30ug, and Cephalexin 30ug). Antibiotic susceptibility results test revealed all proteus isolates to be resistant to most antibiotics, especially the classes (penicillin, Macrolides, Cephalosporins). In contrast, there were no significant differences between the resistance of the protease isolates from the urinary tract and the protease isolated from diarrhea. On the other hand, The antibiotic gentamicin recorded the highest sensitivity to Proteus isolates (UTI) and (diarrhea) tested at 46.6% and 39.9%, respectively. This study concludes to new antibiotics must be developed, although aminoglycosides are still effective against Proteus genus.


-Abdulrraziq, A. A. and Salih, S. M. (2022). Sensitivity testing of Pseudomonas aeruginosa to Asparagopsis taxiformis extracts. Al-Mukhtar Journal of Sciences 37 (2): 168-174.

-Abdulrraziq, A. A., Salih, S. M., & Ibrahim, N. (2023). Biological Effect of Oxalis per-carpes Extracts against Methicillin-Resistant Staphylococcus aureus (MRSA). Pharmaceutical and Biosciences Journal, 01-06.‏

-AL-Dulaimy, I. M., Saleem, A. J., & Al-Taai, H. R. R. (2023). Detection of flaA, fliC, mrpA and rsbA Gene in proteus mirabilis Multidrug Resistance Isolated from Different Clinical Sources in Baquba City. The Egyptian Journal of Hospital Medicine, 90(2), 2831-2838.‏

-ALjeelizy, Z. A. H., Raheema, R. H., Abood, S. F., & Raheem, H. Q. (2022). Silver Nanoparticles Biosynthesis, Characterization and Their Antibacterial Activity against Multidrug-Resistant Bacteria in wasit Province, Iraq. HIV Nursing, 22(2), 2089-2095.‏

-Al-Nabhani, N. A., & Shami, A. M. (2023). Study Gene Expression of Carbapneam Resistance Genes in Proteus mirabilis Isolated from Clinical Samples from Baghdad Hospitals. Acta Biomed, 94(2), e2023114.‏

-Alqani, V. H. A., Meizel, M. M., & ALfuadi, A. H. H. (2023). Problem of antibiotic resistance in urinary tract infection in Al-Diwaniyah city, Iraq. Rawal Medical Journal, 48(1).‏

-Bilal, S., Anam, S., Mahmood, T., Abdullah, R. M., Nisar, S., Kalsoom, F., ... & Anjum, F. R. (2019). Antimicrobial profiling and molecular characterization of antibiotic resistant genes of Proteus vulgaris isolated from tertiary care hospital, Islamabad, Pakistan. Pakistan journal of pharmaceutical sciences, 32.‏

-Chukwudi, C. U. (2016). rRNA binding sites and the molecular mechanism of action of the tetracyclines. Antimicrobial agents and chemotherapy, 60(8), 4433-4441.‏

-Dai, H., Lu, B., Li, Z., Huang, Z., Cai, H., Yu, K., & Wang, D. (2020). Multilocus sequence analysis for the taxonomic updating and identification of the genus Proteus and reclassification of Proteus genospecies 5 O’Hara et al. 2000, Proteus cibarius Hyun et al. 2016 as later heterotypic synonyms of Proteus terrae Behrendt et al. 2015. BMC microbiology, 20, 1-10.‏

-Drzewiecka, D. (2016). Significance and roles of Proteus spp. bacteria in natural environments. Microbial ecology, 72, 741-758.‏

-Flamerz, R. A., Obid, S. S., & Jasim, W. M. (2023). Study the Effect of Biofilm Production on Antibiotic Resistance in Proteus mirabilis Isolated from Clinical Samples in Kirkuk City. NTU Journal of Pure Sciences, 2(1).‏

-Frieri, M., Kumar, K., & Boutin, A. (2017). Antibiotic resistance. Journal of infection and public health, 10(4), 369-378.‏

-Hamilton, A. L., Kamm, M. A., Ng, S. C., & Morrison, M. (2018). Proteus spp. as putative gastrointestinal pathogens. Clinical microbiology reviews, 31(3), 10-1128.‏

-Hosien, B., Belhaj, H., & Atia, A. (2022). Characteristics of antibiotic-resistant bacteria in Libya based on different source of infections. Libyan International Medical University Journal, 7(02): 039-044.‏

-Hua, X., Zhang, L., Moran, R. A., Xu, Q., Sun, L., Van Schaik, W., & Yu, Y. (2020). Cointegration as a mechanism for the evolution of a KPC-producing multidrug resistance plasmid in Proteus mirabilis. Emerging Microbes & Infections, 9(1), 1206-1218.‏

-Hyun, D. W., Jung, M. J., Kim, M. S., Shin, N. R., Kim, P. S., Whon, T. W., & Bae, J. W. (2016). Proteus cibarius sp. nov., a swarming bacterium from Jeotgal, a traditional Korean fermented seafood, and emended description of the genus Proteus. International Journal of Systematic and Evolutionary Microbiology, 66(6), 2158-2164.‏

-Jalil, I. S., Mohammad, S. Q., Mohsen, A. K., & Al-Rubaii, B. A. L. (2023). Inhibitory activity of Mentha spicata oils on biofilms of Proteus mirabilis isolated from burns. Biomedicine, 43(02), 748-752.‏

-LaPlante, K. L., Dhand, A., Wright, K., & Lauterio, M. (2022). Re-establishing the utility of tetracycline-class antibiotics for current challenges with antibiotic resistance. Annals of Medicine, 54(1), 1686-1700.‏

-Li, R., Zhou, M., Lu, J., & Wei, J. (2022). Antibiofilm effects of epigallocatechin gallate against Proteus mirabilis wild-type and ampicillin-induced strains. Foodborne pathogens and Disease, 19(2), 136-142.‏

-McMurtry, T. A., Barekat, A., Rodriguez, F., Purewal, P., Bulman, Z. P., & Lenhard, J. R. (2021). Capability of Enterococcus faecalis to shield Gram-negative pathogens from aminoglycoside exposure. Journal of Antimicrobial Chemotherapy, 76(10), 2610-2614.‏

-Meerah, W. A. A. (2023). Evaluation of self-medication with antibiotics in Libyan community.‏ Mediterr J Pharm Pharm Sci. 3 (1): 77 - 81.

-Mohsin, M. R., & AL-Rubaii, B. A. L. (2023). Bacterial growth and antibiotic sensitivity of Proteus mirabilis treated with anti-inflammatory and painkiller drugs. Biomedicine, 43(02), 728-734.‏

-Phan, H., & Lehman, D. (2012). Cerebral abscess complicating Proteus mirabilis meningitis in a newborn infant. Journal of Child Neurology, 27(3), 405-407.‏

-Rózalski, A., Sidorczyk, Z., & Kotełko, K. R. Y. S. T. Y. N. A. (1997). Potential virulence factors of Proteus bacilli. Microbiology and Molecular Biology Reviews, 61(1), 65-89.‏

-Rozwandowicz, M., Brouwer, M. S. M., Fischer, J., Wagenaar, J. A., Gonzalez-Zorn, B., Guerra, B., ... & Hordijk, J. (2018). Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. Journal of Antimicrobial Chemotherapy, 73(5), 1121-1137.‏

-Shim, H. (2023). Three innovations of next-generation antibiotics: evolvability, specificity, and non-immunogenicity. Antibiotics, 12(2), 204.‏

-Shipitsyna, I. V., & Osipova, E. V. (2022). Efficacy of cephalosporins against enterobacteria isolated from patients with chronic osteomyelitis. Klinicheskaia Laboratornaia Diagnostika, 67(3), 158-162.‏

-Webster, C. M., & Shepherd, M. (2023). A mini-review: environmental and metabolic factors affecting aminoglycoside efficacy. World Journal of Microbiology and Biotechnology, 39(1), 7.‏




How to Cite

Abdulrraziq, A. A., & Salih, S. M. (2023). Proteus genus sensitivity testing for various classes of antibiotics. Scientific Journal for Faculty of Science-Sirte University, 3(2), 110–144.