Exploring the Chemical Components of Porcelain Tiles Commercially available in Benghazi City, Libya

Authors

  • Maysson Mohammed Yaghi Department of Chemistry, Faculty of Science Al-Abyar, University of Benghazi, Benghazi, Libya
  • Khaled Muftah Elsherif Libyan Authority for Scientific Research, Tripoli, Libya
  • Majdi Ali Abdulhadi Department of Chemistry, Faculty of Science Al-Abyar, University of Benghazi, Benghazi, Libya

DOI:

https://doi.org/10.37375/sjfssu.v4i1.2606

Keywords:

Porcelain tiles, Chemical composition, Mass percentage, X-Ray Fluorescence Spectrometer, Raw mineral materials

Abstract

This study aimed to assess the chemical composition of porcelain tiles in terms of mass percentages. Samples of porcelain tiles were collected from various markets in Benghazi, Libya. X-Ray Fluorescence Spectrometer was utilized to determine the chemical components of the tiles. The evaluation criteria for high-quality raw mineral materials included high representative oxide content, low impurity oxides, and low loss on ignition (LOI). Notably, a distinct variation in the chemical composition of porcelain tiles was observed. In general, two formulations were identified: one group consisted of tiles with high silica content, elevated levels of alumina and alkaline oxides, and low magnesium oxide (MgO); another group comprised tiles with low silica content, high MgO and alumina content, and relatively lower alkaline oxides. The results revealed the averaged mass percentages of various components in the porcelain tiles: silica (SiO2) showed a resistant characteristic to melting and shrinkage at 44.37%; alumina (Al2O3) played a role in polishing and grinding the tiles at 9.85%; lime (CaO) contributed to enhancing the tiles' resistance against heat and abrasion with a mass percentage of 7.26%; MgO served as a sintering aid at 0.40%; potassium oxide (K2O) improved heat resistance, abrasion resistance, and overall appearance of the tiles at 0.77%; sodium oxide (Na2O) was present at 0.61%; iron oxide (Fe2O3) and titanium oxide (Ti2O) acted as colored impurities at 2.84% and 0.82%, respectively. Additionally, calcite (CaCO3) was identified at 11.68%, aiding in the melting and shrinkage process during heating by releasing CO2.

References

Alonso De la Garza, D.A., Guzmán, A.M., Gómez, C., Martínez, D.I., & Elizondo, N. (2022). Influence of Al2O3 and SiO2 nanoparticles addition on the microstructure and mechano-physical properties of ceramic tiles. Ceramics International, 48, 12712–12720. https://doi.org/10.1016/j.ceramint.2022.01.140

Amorós, J.L.; Blasco, E.; Moreno, A., Feliu, C. (2022). Kinetics of the transformations occurring during the firing process of an industrial spray—Dried porcelain stoneware body. Ceramics International, 48, 17611–17620. https://doi.org/10.1016/j.ceramint.2022.03.031

Beckhoff, B.; Kanngießer habil, B.; Langhoff, N.; Wedell, R.; Wolff, H. (Eds.). (2006). Handbook of Practical X-Ray Fluorescence Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-36722-2

Berto, A.M. (2007). Ceramic tiles: Above and beyond traditional applications. Journal of the European Ceramic Society, 27, 1607-1613. https://doi.org/10.1016/j.jeurceramsoc.2006.04.146

Bragança, S.R.; Lengler, H.C.M.; Bergmann, C.P. (2011). Spodumene-bearing rock as flux for triaxial ceramic bodies. Advances in Applied Ceramics, 110(5-6), 293-300. https://doi.org/10.1179/1743676111Y.0000000018

Carty, W.M.; Senapati, U. (1998). Porcelain – raw materials, processing, phase evolution and mechanical behavior. Journal of the American Ceramic Society, 81, 3-20. https://doi.org/10.1111/j.1151-2916.1998.tb02290.x

Cheng, X.; Ke, S.; Wang, Q.; Wang, H.; Shui, A.; Liu, P. (2012). Characterization of transparent glaze for single-crystalline anorthite porcelain. Ceramics International, 38, 4901-4908. https://doi.org/10.1016/j.ceramint.2012.02.081

De Noni Jr., A.; Hotza, D.; Soler, V.C.; Vilches, E.S. (2010). Influence of composition on mechanical behaviour of porcelain tile. part I: microstructural characterization and developed phases after firing. Materials Science & Engineering A, 527(7-8), 1730-1735. https://doi.org/10.1016/j.msea.2009.10.057

Demarch, A., Waterkemper, A., Pasini, D., Ruzza, S., Montedo, O.R., & Angioletto, E. (2021). Effects of roughness parameters on slip resistance for different methods used to determine the coefficient of friction for ceramic floor tiles. Ceramics International, 47, 24281–24286. https://doi.org/10.1016/j.ceramint.2021.05.139.

Dondi, M.; Ercolani, G.; Guarini, G.; Melandri, C.; Raimondo, M.; Rocha e Almendra, E.; Cavalcante, P.M.T. (2005). The role of surface microstructure on the resistance to stains of porcelain stoneware tiles. Journal of the European Ceramic Society, 25, 357-365. https://doi.org/10.1016/j.jeurceramsoc.2004.01.017

Esposito, L., Tucci, A., & Naldi, D. (2005). The reliability of polished porcelain stoneware tiles. Journal of the European Ceramic Society, 25, 1487-1498. https://doi.org/10.1016/j.jeurceramsoc.2004.05.030

Esposito, L.; Salem, A.; Tucci, A.; Gualtieri, A.; Jazayeri, S.H. (2005). The use of nepheline-syenite in a body mix for porcelain stoneware tiles. Ceramics International, 31(2), 233-240. https://doi.org/10.1016/j.ceramint.2004.05.006

Ferrari, S.; Gualtieri, A. F. (2006). The use of illitic clays in the production of stoneware tile ceramics. Applied Clay Science, 32, 73-81. https://doi.org/10.1016/j.clay.2005.10.001

Gultekin, E.E.; Topates, G.; Kurama, S. (2017). The effects of sintering temperature on phase and pore evolution in porcelain tiles. Ceramics International, 43(14), 11511-11515. https://doi.org/10.1016/j.ceramint.2017.06.024

Hamidalddin, S.H.Q. (2020). A Study of Chemical, Mineral Compositions (of Some Metals) and Natural Radioactivity in Porcelain and Ceramic Dinner Ware. Journal of Geoscience and Environment Protection, 8(11), 209-221. https://doi.org/10.4236/gep.2020.811014

Kamseu, E.; Leonelli, C.; Boccaccini, D. N.; Veronesi, P.; Miselli, P.; Pellacani, G.; Melo, U. C. (2007). Characterisation of porcelain compositions using two china clays from Cameroon. Ceramics International, 33(5), 851-857. https://doi.org/10.1016/j.ceramint.2006.01.025

Leonelli, C.; Bondioli, F.; Veronesi, P.; Romagnoli, M.; Manfredini, T.; Pellacani, G.; Cannillo, V. (2001). Enhancing the mechanical properties of porcelain stoneware tiles: a microstructural approach. Journal of The European Ceramic Society, 21(6), 785-793. https://doi.org/10.1016/S0955-2219(00)00266-1

Li, K.; Cordeiro, E.d.S.; De Noni, A. Jr. (2023). Comparison between Mullite-Based and Anorthite-Based Porcelain Tiles: A Review. Eng, 4(3), 2153-2166. https://doi.org/10.3390/eng4030123

Martín, J.; De la Torre, A.G.; Aranda, M.A.; Rincón, J.M.; Romero, M. (2010). Evolution with temperature of crystalline and amorphous phases in porcelain stoneware. Journal of the American Ceramic Society, 92, 229-234. https://doi.org/10.1111/j.1551-2916.2008.02862.x

Njindam, O.; Njoya, D.; Mache, J.; Mouafon, M.; Messan, A.; Njopwouo, D. (2018). Effect of glass powder on the technological properties and microstructure of clay mixture for porcelain stoneware tiles manufacture. Construction and Building Materials, 170, 512-519. https://doi.org/10.1016/j.conbuildmat.2018.03.069

Njoya, D.; Tadjuidje, F.; Ndzana, E.; Pountouonchi, A.; Tessier-Doyen, N.; LecomteNana, G. (2017). Effect of flux content and heating rate on the microstructure and technological properties of mayouom (western-Cameroon) kaolinite clay based ceramics. Journal of Asian Ceramic Societies, 5(4), 422-426. https://doi.org/10.1016/j.jascer.2017.09.004

Pérez, J.M.; Rincón, J.M.; Romero, M. (2012). Effect of moulding pressure on microstructure and technological properties of porcelain stoneware. Ceramics International, 38, 317-332. https://doi.org/10.1016/j.ceramint.2011.07.009

Sánchez, E.; García-Ten, J.; Sanz, V.; Moreno, A. (2010). Porcelain tile: Almost 30 years of steady scientific-technological evolution. Ceramics International, 36, 831-845. https://doi.org/10.1016/j.ceramint.2009.11.016

Selli, N.T. (2015). Development of anorthite based white porcelain stoneware tile compositions. Ceramics International, 41, 7790-7795. https://doi.org/10.1016/j.ceramint.2015.02.112

Sverchkov, I.P.; Gembitskaya, I.M.; Povarov, V.G.; Chukaeva, M.A. (2023). Method of reference samples preparation for X-ray fluorescence analysis. Talanta, 252, 123820. https://doi.org/10.1016/j.talanta.2022.123820

Tripati, S.; Parthiban, G.; Pattan, J.N.; Menezes, A. (2017). Chemical composition and provenance of Chinese porcelain shards recovered from Old Goa, west coast of India. Journal of Archaeological Science: Reports, 14, 467-478. https://doi.org/10.1016/j.jasrep.2017.06.002

Downloads

Published

2024-04-17

How to Cite

Yaghi, M. M., Elsherif, K. M., & Abdulhadi, M. A. (2024). Exploring the Chemical Components of Porcelain Tiles Commercially available in Benghazi City, Libya. Scientific Journal for Faculty of Science-Sirte University, 4(1), 59–67. https://doi.org/10.37375/sjfssu.v4i1.2606