Effect of Active Compounds for Quercus Fruit on Some Biochemical Parameters and Tissue Aorta in Induced Atherosclerosis Rats

Authors

  • Intisar Taha science Department, Basic education Faculty, Mosul University, Mosul, Iraq.

DOI:

https://doi.org/10.37375/sjfssu.v2i2.84

Keywords:

atherosclerosis, Quercus, polyphenol, oil.

Abstract

This research included extractions of the active compounds from Quercus fruit, the identification of active compounds extract by using the capillary gas chromatography technique CGC and with high-performance liquid chromatography technology HPLC. The active dose of the aqueous extract (250 mg/kg) was studied in animals after induced arteriosclerosis with cholesterol (500mg/kg) dissolved in coconut oil for two weeks. The effect of the extracts oil, poly phenols, and at 7, 37.5, and 10 mg/kg respectively were studied also. The results showed a significant (P≤0.05) increase in catalase activity and the level of high density lipoprotein-cholesterol (HDL-C), However, there was a significant (P≤0.05) decrease in the high plasma kallikrein, caspase-3, cholesterol, triglycerides, and low-density lipoprotein cholesterol LDL-C in induced atherosclerosis rats treated with all extracts compared with affected control with the active extracts (oil, poly phenols) during the first and second week. The tissue aorta examination in the group of animals treated with the active extracts (aqueous, oily, flavonoid) after two weeks of the treatment showed that large parts of the tissues of the aorta were healed close to the normal state compared to the group of animals induced with atherosclerosis untreated whose tissues contained on thickenings and foam cells.

References

Ahn, S., Jun, S., & Joung, H. (2020). Association of total flavonoid intake with hypo-HDL-cholesterolemia among Korean adults: effect modification by polyunsaturated fatty acid intake. Nature, 12(1), 195.

Amedi, S.I., & Mohammed, B.M. (2020). Anticlastogenic properties of Quercus infectoria galls extract against DMBA induced genotoxicity in bone marrow cells of mice in vivo. 34, 279-285. I.J.V.S

Al-Rousana, W. M., Ajoa, R. Y., Al-Ismailb, K. M., Attleec, A., Shakerd, R. R., & Osailid, T. M. (2013). Characterization of acorn fruit oils extracted from selected mediterranean Quercus species. Grasas y Aceites, 64, 5.

Bahmani, M., Forouzan, S. H., Fazeli-Moghadam, E., Rafieian-Kopaei, M., Adineh, A., & Saberianpour, S. H. (2015). Quercus (Quercus branti): an overview. J chem pharm res, 7(1), 634-9.

Burtis C.A, Ashwood E.R. and Bruns D.E. (2012). Tietz textbook of clinical chemistry and molecular diagnostics. By Saunders, an imprint of Elsevier Inc. USA

Casula., M, Colpani O., Xie S, Catapano A.L, Baragetti A. (2021). HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells. 23; 10(8):1869.

Mazidi M., Shekoohi N., Katsiki, N., Banach M., Meta-analysis Collaboration (LBPMC) Group, T. L. A. B. P. (2022). Omega-6 fatty acids and the risk of cardiovascular disease: insights from a systematic review and meta-analysis of randomized controlled trials and a Mendelian randomization study. Arch. Med. Sic 18(2), 466-479.

Chokpaisarn, J., Chusri, S., & Voravuthikunchai, S. P. (2020). Clinical randomized trial of topical Quercus infectoria ethanolic extract for the treatment of chronic diabetic ulcers. J. Herb. Med., 21, 100301.

Elrasoul, A. S. A., Mousa, A. A., Orabi, S. H., Mohamed, M. A. E. G., Gad-Allah, S. M., Almeer, R.,... & Eldaim, M. A. A. (2021). Antioxidant, anti-inflammatory, and anti-apoptotic effects of Azolla pinnata ethanolic extract against lead-induced hepatotoxicity in rats. Antioxidants, 9(10), 1014.‏

Friedewald, W. T., Levy, R. I., & Fredrickson, D. S. (2000). Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem, 18(6), 499-502.

Hadwan, M. H., & Abed, H. N. (2016). Data supporting the spectrophotometric method for the estimation of catalase activity. Data in brief, 6, 194-199.‏

Ito, R., & Statland, B. E. (1981). Centrifugal analysis for plasma kallikrein activity, with use of the chromogenic substrate S-2302. Clin. Chem, 27(4), 586-593.

Kang, I., Park, M., Yang, S. J., & Lee, M. (2019). Lipoprotein Lipase Inhibitor, Nordihydroguaiaretic Acid, Aggravates Metabolic Phenotypes and Alters HDL Particle Size in the Western Diet-Fed db/db Mice. "Int. J. Mol. Sci., 20(12), 3057.

Kassim, H.M. (2012). Effect of Fenugrreek seeds extraction liver cells and enzymes of albino male. Int. J. Soc , 53(1), 62-67.

Kato, H., Li W., Koike,M. and Koike, K. (2010). Phenolic glygosides from agrimonia pilosa. Phytochem. J Phtochem., 71(16): 1925-1929.

Kostner G.M. (1976). Enzymatic determination of cholesterol in high density lipoprotein fraction prepered by polyanion precipitation. Clin Chem., 22(5): 698.

Larsen, L. F., Marckmann, P., Bladbjerg, E. M., Østergaard, P. B., Sidelmann, J., & Jespersen, J. (2000). The link between high-fat meals and postprandial activation of blood coagulation factor VII possibly involves kallikrein. Scandinavian J. Clin. Lab, 60(1), 45-54.

Libby, P. (2021). The changing landscape of atherosclerosis. Nature 592, 524–533

Martínez-González, J., Varona, S., Cañes, L., Galán, M., Briones, A. M., Cachofeiro, V., & Rodríguez, C. (2019). Emerging roles of lysyl oxidases in the cardiovascular system: new concepts and therapeutic challenges. Biomolecules, 9(10), 610.‏

Nandi, A., Jun-Yan, L., Jana, C. K.( 2019). Oxidantive stress-and age-associated degenerative diseases. Oxid. Med. Cell. Long., 2019: 1-19.

Pedro, A. C., Maciel, G. M., Riberio, V. R. and Isidoro, C. W. (2019). Fundamental and applied aspects of catechins, from different sources: A review. Inter. J. Food Sic. Tech., 55(2): 1-14.

Pikto - Pictkiewicz W., Wolkowska K., and Pasierski T. (2005). Treatment of Dyslipidemia in Patients Diabetes Mellitus. Pharmacol Rep, 57: 10-19.

Poznyak, A. V., Nikiforov, N. G., Starodubova, A. V., Popkova, T. V., & Orekhov, A. N.( 2021). Macrophages and Foam Cells: Brief Overview of Their Role, Linkage, and Targeting Potential in Atherosclerosis. Biomedicines, 9(9), 1221.‏

Que X., Hung MY., Yeang C., Gonen A., Prohaska TA., Sun X., Diehl C., Määttä A., Gaddis DE., Bowden K., Pattison J., MacDonald JG., Ylä-Herttuala S., Mellon PL., Hedrick CC., Ley K., Miller YI., Glass CK., Peterson KL, Binder CJ., Tsimikas S., Witztum JL(2018) Oxidized phospholipids are proinflammatory and proatherogenic in hypercholesterolaemic mice. Nature, 558(7709):301-306

Ram, H, Jatwa, R., Purohit A. (2014) Antiatherosclerotic and Cardioprotective Potential of Acacia senegal Seeds in Diet-Induced Atherosclerosis in Rabbits. Biochem Res. Int.; 2014:436848.

Rica,R., Molly, M. (2012). Plasmonic II ELISA for the ultrasensitive detection of disease biomarker with the necked eye: Nat. Nanotechnol, 7 (12):821-4.

Rograni M., and Baluchnejadmojard T. (2010). Hypoglycemic and Hypolipidemic effect and antioxidant activity of chronic epigallocatechin- gallate in streptozotocin - diabetic rats. Pathophysiology. 17: 55-59.

Sawada H., Beckner, Z. A., Ito S., Daugherty, A., & Lu H. S. (2022). β-Aminopropionitrile-induced aortic aneurysm and dissection in mice. JVS-vascular science, 3, 64–72.

Sayyar, S., Abidin, Z.Z. and Yunus, R. (2013). Optimisation of solid liquid extraction of jatropha oil using petrolum ether. Asia-Pacific. J of Chem Eng., 8:331-338.

Schulze, M. B.( 2021). Dietary Linoleic Acid: Will Modifying Dietary Fat Quality Reduce the Risk of Type 2 Diabetes?. Diabetes Care, 44(9), 1913-1915.

Soehnlein O., Libby, P. (2021) Targeting inflammation in atherosclerosis — from experimental insights to the clinic. Nat Rev Drug Discov 20, 589–610.

Taib, M., Rezzak, Y., Bouyazza, L., & Lyoussi, B.( 2020). Medicinal Uses, Phytochemistry, and Pharmacological Activities of Quercus Species. Evid. Based.Complementary Altern. Med: eCAM, 2020.

Tungmunnithum, D., Thongboonyou, A., Pholboon, A., & Yangsabai, A. (2018). Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel, Switzerland), 5(3), 93.

Wen, G., Yao, L., Hao, Y., Wang, J., & Liu, J. (2022). Bilirubin ameliorates murine atherosclerosis through inhibiting cholesterol synthesis and reshaping the immune system, J. Transl. Med , 20(1), 1-18.‏

Yokoyama, H., Masuyama, T., Tanaka, Y., Tsubakihara, I., Kondo, K., & Yoshinari, K. (2022). Acyl-CoA: diacylglycerol acyltransferase 1 inhibition in the small intestine increases plasma transaminase activity via the activation of protein kinase C pathway. J. Toxicol. Sci., 47(1), 19-30.‏

Zhang W., An R., Li Q., Sun L., Lai X., Chen R., Li D., Sun S.( 2020) Theaflavin TF3 Relieves Hepatocyte Lipid Deposition through Activating an AMPK Signaling Pathway by targeting Plasma Kallikrein. J Agric Food Chem. 68(9):2673-2683.

Downloads

Published

2022-10-27

How to Cite

Taha, I. (2022). Effect of Active Compounds for Quercus Fruit on Some Biochemical Parameters and Tissue Aorta in Induced Atherosclerosis Rats. Scientific Journal for Faculty of Science-Sirte University, 2(2), 62–72. https://doi.org/10.37375/sjfssu.v2i2.84