The impact of Salt Stress on The Growth and Photosynthetic Pigments of Vicia faba (L).
DOI:
https://doi.org/10.37375/sjfssu.v1i2.61Keywords:
Germination, Salinity stress, Sodium chloride (NaCl), Chlorophyll.Abstract
Water used for crop irrigation is often of insufficient quality in the Mediterranean region, where sea water invades the porous karst matrix and salinizes Sources of soil and water. Measuring the productivity of horticultural crops under saline conditions helps decide if and when crops should be irrigated if water is saline, thus balancing crop water and salt stress. To examine the effects of saline irrigation water on (Vicia faba L.) biomass and yield parameters, a greenhouse pot experiment was set up.NaCl salinity was applied as follows: After 15 days from irrigation, plants were subjected to graded levels of salinity: 0, 50, 100, 200 and 300 mM NaCl, applied in stepwise daily increments to avoid induction of salt shock to the seedlings. Height of Plant (cm), The number of lateral branches , number of( leaves, pods, seeds) per plant, shoot weight (g), is correlated with an increase in stressed plant photosynthetic pigments. five weeks after salinity therapy, the weight of the pod (g) and the weight of the seed (g) were determined. Increased irrigation water salinity statistically significantly decreased the calculated parameters (P<0.05) relative to regulation , except for the number of branches and pods. Salinity is associated with an increase in photosynthetic pigments in stressed plants. The productivity of Vicia faba has decreased in proportion to the degree of salinity of irrigation water.
References
Allakhverdiev, S. I., Sakamoto, A., Nishiyama, Y., & Murata, N. (2000). Inactivation of photosystems I and II in response to osmotic stress in Synechococcus. Contribution of water channels. Plant Physiology, 122(4), 1201–1208.
Anderson, T. W., Finn, J. D., Gerber, S. B., & Voelkl, K. E. (1997). Basic Ideas of Probability. In The SPSS Guide to the New Statistical Analysis of Data (pp. 91–94). Springer.
Andriolo, J. L., Luz, G. L. da, Witter, M. H., Godoi, R. dos S., Barros, G. T., & Bortolotto, O. C. (2005). Growth and yield of lettuce plants under salinity. Horticultura Brasileira, 23, 931–934.
Argaw, A., & Mnalku, A. (2017). Effectiveness of native Rhizobium on nodulation and yield of faba bean (Vicia faba L.) in Eastern Ethiopia. Archives of Agronomy and Soil Science, 63(10), 1390–1403.
Dantas, B. F., Ribeiro, L. de S., & Aragão, C. A. (2005). Physiological response of cowpea seeds to salinity stress. Revista Brasileira de Sementes, 27, 144–148.
Florina, F., Giancarla, V., Cerasela, P., & Sofia, P. (2013). The effect of salt stress on chlorophyll content in several Romanian tomato varieties. Journal of Horticulture, Forestry and Biotechnology, 17(1), 363–367.
Graham, P. H., & Vance, C. P. (2003). Legumes: importance and constraints to greater use. Plant Physiology, 131(3), 872–877.
Hamada, A. M. (1995). Alleviation of the adverse effects of NaCl on germination, seedling, growth and metabolic activities of maize plants by calcium salts. Bull. Fac. Sci. Assiut Univ, 24, 211–220.
Herridge, D. F., Peoples, M. B., & Boddey, R. M. (2008). Global inputs of biological nitrogen fixation in agricultural systems. Plant and Soil, 311(1), 1–18.
Jaleel, C. A., Gopi, R., Kishorekumar, A., Manivannan, P., Sankar, B., & Panneerselvam, R. (2008). Interactive effects of triadimefon and salt stress on antioxidative status and ajmalicine accumulation in Catharanthus roseus. Acta Physiologiae Plantarum, 30(3), 287–292.
Jamil, M., Lee, K. J., Kim, J. M., Kim, H.-S., Rha, E. S., (2007). Salinity reduced growth PS2 photochemistry and chlorophyll content in radish. Scientia Agricola, 64, 111–118.
Jensen, E. S., Peoples, M. B., Boddey, R. M., Gresshoff, P. M., Hauggaard-Nielsen, H., Alves, B. J. R., & Morrison, M. J. (2012). Legumes for mitigation of climate change and the provision of feedstock for biofuels and biorefineries. A review. Agronomy for Sustainable Development, 32(2), 329–364.
Kavita, K., Alka, S., (2010). Assessment of salinity tolerance of Vigna mungo var. Pu-19 using ex vitro and in vitro methods. Asian Journal of Biotechnology, 2(2), 73–85.
Keiper, F. J., Chen, D. M., & De Filippis, L. F. (1998). Respiratory, photosynthetic and ultrastructural changes accompanying salt adaptation in culture of Eucalyptus microcorys. Journal of Plant Physiology, 152(4–5), 564–573.
Khan, M. A., Shirazi, M. U., Khan, M. A., Mujtaba, S. M., Islam, E., Mumtaz, S., Shereen, A., Ansari, R. U., & Ashraf, M. Y. (2009). Role of proline, K/Na ratio and chlorophyll content in salt tolerance of wheat (Triticum aestivum L.). Pak. J. Bot, 41(2), 633–638.
Koivunen, E., Partanen, K., Perttilä, S., Palander, S., Tuunainen, P., & Valaja, J. (2016). Digestibility and energy value of pea (Pisum sativum L.), faba bean (Vicia faba L.) and blue lupin (narrow-leaf)(Lupinus angustifolius) seeds in broilers. Animal Feed Science and Technology, 218, 120–127.
Lambers, H., Chapin III, F. S., & Pons, T. L. (2008). Plant physiological ecology. Springer Science & Business Media.
Lee, G., Carrow, R. N., & Duncan, R. R. (2004). Photosynthetic responses to salinity stress of halophytic seashore paspalum ecotypes. Plant Science, 166(6), 1417–1425.
Locy, R. D., Chang, C.-C., Nielsen, B. L., & Singh, N. K. (1996). Photosynthesis in salt-adapted heterotrophic tobacco cells and regenerated plants. Plant Physiology, 110(1), 321–328.
López-Aguilar, R., Orduño-Cruz, A., Lucero-Arce, A., Murillo-Amador, B., & Troyo-Diéguez, E. (2003). Response to salinity of three grain legumes for potential cultivation in arid areas. Soil Science and Plant Nutrition, 49(3), 329–336.
Mane, A. V, Karadge, B. A., & Samant, J. S. (2010). Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. J. Chem. Pharm. Res, 2(3), 338–347.
Mathur, N., Singh, J., Bohra, S., Bohra, A., & Vyas, A. (2006). Biomass production, productivity and physiological changes in moth bean genotypes at different salinity levels. Am J Plant Physiol, 1(2), 210–213.
Mazher, A. M. A., El-Quesni, E. M. F., & Farahat, M. M. (2007). Responses of ornamental and woody trees to salinity. World J. Agric. Sci, 3(3), 386–395.
Memon, S. A., Hou, X., & Wang, L. J. (2010). morphlogical analysis of salt strees response of pak chol. Electronic Journal of Environmental, Agricultural & Food Chemistry, 9(1).
Miransari, M., & Smith, D. L. (2007). Overcoming the stressful effects of salinity and acidity on soybean nodulation and yields using signal molecule genistein under field conditions. Journal of Plant Nutrition, 30(12), 1967–1992.
Misra, A. N., Sahu, S. M., Misra, M., Singh, P., Meera, I., Das, N., Kar, M., & Sahu, P. (1997). Sodium chloride induced changes in leaf growth, and pigment and protein contents in two rice cultivars. Biologia Plantarum, 39(2), 257–262.
Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25(2), 239–250.
Nedjimi, B., Daoud, Y., & Touati, M. (2006). Growth, water relations, proline and ion content of in vitro cultured Atriplex halimus subsp. schweinfurthii as affected by CaCl2. Communications in Biometry and Crop Science, 1(2), 79–89.
Neugschwandtner, R., Ziegler, K., Kriegner, S., Wagentristl, H., & Kaul, H.-P. (2015). Nitrogen yield and nitrogen fixation of winter faba beans. Acta Agriculturae Scandinavica, Section Soil & Plant Science, 65(7), 658–666.
Niazi, B. H., Athar, M., Salim, M., & Rozema, J. (2005). Growth and ionic relations of fodderbeet and seabeet under saline environments. International Journal of Environmental Science & Technology, 2(2), 113–120.
Orak, A., Ates, E., & others. (2005). Resistance to salinity stress and available water levels at the seedling stage of the common vetch (Vicia sativa L.). Plant Soil Environ, 51(2), 51–56.
Radwan, U. A., Springuel, I., Biswas, P. K., & Huluka, G. (2000). The effect of salinity on water use efficiency of Balanites aegyptiaca (L.) Del. Egyptian Journal of Biology, 2, 1–7.
Rodriguez, I. R., & Miller, G. L. (2000). Using a chlorophyll meter to determine the chlorophyll concentration, nitrogen concentration, and visual quality of St. Augustinegrass. HortScience, 35(4), 751–754.
Schutzendubel, A., & Polle, A. (2002). Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53(372), 1351–1365.
Sen, S. K., & Mandal, P. (2016). Solid matrix priming with chitosan enhances seed germination and seedling invigoration in mung bean under salinity stress. Journal of Central European Agriculture.
Šiler, B., Mišić, D., Filipović, B., Popović, Z., Cvetić, T., & Mijović, A. (2007). Effects of salinity on in vitro growth and photosynthesis of common centaury (Centaurium erythraea Rafn.). Archives of Biological Sciences, 59(2), 129–134.
Singh, A. K., Bharati, R. C., Ch, N., Pedpati, A., & others. (2013). An assessment of faba bean (Vicia faba L.) current status and future prospect. African Journal of Agricultural Research, 8(50), 6634–6641.
Sixto, H., Grau, J. M., Alba, N., & Alia, R. (2005). Response to sodium chloride in different species and clones of genus Populus L. Forestry, 78(1), 93–104.
Steel, R. G. D., Torrie, J. H., & others. (1960). Principles and procedures of statistics. Principles and Procedures of Statistics.
Sultana, N., Ikeda, T., & Itoh, R. (1999). Effect of NaCl salinity on photosynthesis and dry matter accumulation in developing rice grains. Environmental and Experimental Botany, 42(3), 211–220.
Taffouo, V D, Wamba, O. F., Youmbi, E., Nono, G. V, Akoa, A., & others. (2010). Growth, yield, water status and ionic distribution response of three bambara groundnut (Vigna subterranea (L.) Verdc.) landraces grown under saline conditions. International Journal of Botany, 6(1), 53–58.
Taffouo, Victor Desire, Kouamou, J. K., Ngalangue, L. M. T., Ndjeudji, B. A. N., Akoa, A., & others. (2009). Effects of salinity stress on growth, ions partitioning and yield of some cowpea (Vigna unguiculata L. Walp.) cultivars. International Journal of Botany, 5(2), 135–143.
Tantawy, A. S., Abdel-Mawgoud, A. M. R., El-Nemr, M. A., & Chamoun, Y. G. (2009). Alleviation of salinity effects on tomato plants by application of amino acids and growth regulators. Eur. J. Sci. Res, 30(3), 484–494.
Tort, N., & Turkyilmaz, B. (2004). A physiological investigation on the mechanisms of salinity tolerance in some barley culture forms. JFS, 27, 1–16.
Turan, M. A., Kalkat, V., & Taban, S. (2007). Salinity-induced stomatal resistance, proline, chlorophyll and ion concentrations of bean. Int. J. Agric. Res, 2(5), 483–488.
Vance, C. P., Graham, P. H., & Allan, D. L. (2000). Biological nitrogen fixation: phosphorus-a critical future need? In Nitrogen fixation: From molecules to crop productivity (pp. 509–514). Springer.
Wang, R., Chen, S., Zhou, X., Shen, X., Deng, L., Zhu, H., Shao, J., Shi, Y., Dai, S., & Fritz, E. (2008). Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress. Tree Physiology, 28(6), 947–957.
Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta, 218(1), 1–14.
Welfare, K., Yeo, A. R., & Flowers, T. J. (2002). Effects of salinity and ozone, individually and in combination, on the growth and ion contents of two chickpea (Cicer arietinum L.) varieties. Environmental Pollution, 120(2), 397–403.
Wellburn, A. R., & Lichtenthaler, H. (1984). Formulae and program to determine total carotenoids and chlorophylls a and b of leaf extracts in different solvents. In Advances in photosynthesis research (pp. 9–12). Springer.
Yadav, S. S., McNeil, D. L., Redden, R., & Patil, S. A. (2010). Climate change and management of cool season grain legume crops. Springer.
Zhang, M., Qin, Z., & Liu, X. (2005). Remote sensed spectral imagery to detect late blight in field tomatoes. Precision Agriculture, 6(6), 489–508.