Assessment of Some Heavy Metals Using Sediments and Bivalvia (Mytilus galloprovincialis) Samples Collected from Tobruk Coast
DOI:
https://doi.org/10.37375/sjfssu.v1i2.79Keywords:
Heavy metals, Sediments, Mytilus galloprovincialis, Tobruk Coast.Abstract
This study is designed to assess the concentrations of lead, copper, zinc, iron, cadmium and manganese in sediments and bivalvia (Mytilus galloprovincialis) tissues of Tobruk coast. The samples of sediments and bivalvia were collected from four sites around Tobruk city namely as Main port, Ledo, Andolus and Rasbayad (control site), during summer, 2021. The heavy metals of sediments and bivalvia tissues were determined using atomic absorption spectrometry. Also water samples were taken from four sites and physical and chemical properties of water were measured. The results of sediments showed that the Ledo site significantly recorded the higher concentrations of lead (0.624 mg/kg), zinc (73.77 mg/kg), copper (0.450mg/kg) and iron (94.38mg/kg) than those of the other sites, however, the metals of sediments collected from Rasbayad recorded the lowest concentrations. The results of bivalvia tissues revealed that Main port site recorded the greater concentration of lead (0.420 mg/l), zinc (2.185mg/l), cadmium (0.385 mg/l) and copper (3.010 mg/l) than that of other sites. Moreover, Andolus site recorded significantly the higher concentration of iron (14.135 mg/l) than that of other three sites. On the other hand, the Rasbayad recorded the lowest concentration of lead (0.070 mg/l), zinc (0.115 mg/l), cadmium (0.020 mg/l) and copper (0.030 mg/l) in bivalvia tissues. In general, the results indicated a high degree of contamination by heavy metals in sediments and bivalvia of three sites when compared with the control site (Rasbayad) and it is reflect the environmental pressure surrounding the coast of Tobruk, an urgently action is needed to reduce the causes of pollution and contamination by heavy metals.
References
Ackwerth, E. and Würfels, M. (1994): Der Druckaufschluß — apparativeMöglichkeiten, Probleme und Anwendungen. 10.1007/978-3-642-78669-3_11.
Ahmad, M.K., Islam, S., Rahman, S., Haque, M.R., Islam, M.M. (2010): Heavy metals in water, sediment and some fishes of Buriganga River, Bangladesh. Int. J. Environ. Res., 4 (2), 321-332.
Akoto, O.; Bruce, T.N. & Darko, G. (2008).Heavy metals pollution profiles in streams serving the Owabi reservoir. African J. Environ. Sci. Tech., 2 (11), 354-359.
Andral B.; Stanisiere, J.; Damier, E.; Thebault, H.; Galgani, F. & Boissery, P. (2004). Chemical contamination levels in the Mediterranean based on the use of mussel caging. Mar Pollut Bull 49:704–712.
David, S. M.; Somers KM RR et al. SP for, Benthic the RB of S and L using, And MOM of E, Energy. Dorset O 1998.
Eister, R. (1981), Trace metal concentration in Marine Organism. Oxford Pergamon Press 1981; 685
El-Khair, E. M. (1993). Chemical studies on the Mediterranean coastal waters in the front of the Rosetta mouth of the Nile, M.Sc., thesis, Faculty of science. Alexandria University.
FEPA (1991): Guidelines and standards for environmental pollution control in Nigeria. Federal Environmental protection Agency, pp51-100.
Fitori, A.; Abdulnabi, B.; Ali, R. & Ali, S. (2020). Effects of some heavy metal pollutants on liver and kidney performance of mullet captured from Tobruk harbor. DYSONA – Life Science 1 (2020) 83-90.
Fitori, Amani A.; Ishag, Ibrahim A.; Al-Shobaki, Khaled F.; Balal1, Dina M.; Jaballah, Ahmed; Khaled1, Souad A. and Alkhawaja, Hatam (2021). Microbial contamination in the Tobruk Bay basin. International Journal of Multidisciplinary Sciences and Advanced Technology Special Issue 1(2021) 663–667
Fitori, Amani A.; Ishag, Ibrahim A.; Al-Shobaki, Khaled F.; Balal1, Dina M.; Jab allah, Ahmed; Khaled1, Souad A. and Alkhawaja, Hatam (2021). Microbial contamination in the Tobruk Bay basin. International Journal of Multidisciplinary Sciences and Advanced Technology Special Issue 1(2021) 663–667.
Francois, G, Jean F, Mahmoud B. (2014). Assessment of heavy metal and organic contaminants levels along the Libyan coast using transplanted mussels (Mytilus galloprovincialis) Environmental science and Pollution. DOI 10.1007/s11356-014-3079-1.
Goldberg, E.D. (1975).The mussel watch. Mar Pollut Bull 6:111 (editorial) Golik A, Weber K, Salii-ioglu I, Yilmaz A, Loizides A (1988) Pelagic tar in the Mediterranean Sea. Mar Pollut Bull 19(11):567–572.
González, M. C. ;Méndez, L. ;López, D., & Botello, A. (2006). Evaluación de la contaminación en sedimentosdeláreaportuaria y zona costera de Salina Cruz, Oaxaca, México. Interciencia, 31, 647-656.
Haynes, D. and Johnson, J. E. (2000). Organochlorine, heavy metal and polyaromatic hydrocarbon pollutant concentrations in the Great Barrier Reef (Australia) environment: a review. Marine Pollution Bulletin, 41(7-12), 67-278.
Islam, M. S. and Tanaka. M. (2004). Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Marine Pollution Bulletin, 48, 624–649.
Langston, W.J. (1990). Toxic effect of metals and the incidence of metal pollution in marine ecosystems. In: Furness, R.W. and P.S. Rainbow (Eds.), Heavy Metals in the Marine Environment. Boca Raton, FL: CRC Press, pp. 101-122
Masoud, M.S., Mahmoud, Th.H. and Abdel-Halim, A.M. (2003). Physico chemical studies on El-Mex Bay water, Alexandria. The Second Conference and Exhibition Life and Environment, 3-5 April, 2001.
Metwally, M. and Fouad, I. (2008). Biochemical changes induced by heavy metal pollution in marine fishes at Khomse Coast, Libya. Global Vet 2(6):308–311 (ISSN 1992-6197).
Min, X.; Xie, X.; Chai, L.; Liang, Y.; Li, M. & Ke, Y. (2013). Environmental availability and ecological risk assessment of heavy metals in zinc leaching residue. Transactions of Nonferrous Metals Society of China, 23, 208-218. http://dx.doi.org/10.1016/S1003-6326 (13) 62448-6
Mora, A.; Alfonso, J. A.;Baquero, J. C., Handt, H., &Vásquez, Y. (2013). Elementosmayoritarios, minoritarios y traza en muestras de sedimentosdelmedio y bajo Río Orinoco, Venezuela. RevistaInternacional de ContaminaciónAmbiental, 29, 165-178.
Naji, A; Ismail, A and Ismail. A R. (2010). Chemical speciation and contamination assessment of Zn and Cd by sequential extraction in surface sediment of Klang River, Malaysia Microchemical Journal, 95, 285–292.
Oliveira, J.; Cunha, A., Castilho, F.; Romalde, J.L. & Pereira, M.J. (2011). Microbial contamination and purification of bivalve shellfish: Crucial aspects in monitoring and future perspectives – A mini review. Food Control 2011; 22(6):805-816
Rainbow P. S., (1995). Biomonitoring of heavy metal availability in marine environment. Marine Pollution Bulletin 1995; 31, 183-192.
Stephen, C., Jewett, A. and Sathy Naidu, A. (2000). Assessment of heavy metals in red king crabs following offshore placer gold mining. Mar. Pollut. Bull. 40: 478-490.
Tarvainen, T.; Lahermo, P. and Mannio, J. (1997). Source of trace metals in streams and headwater lakes in Finland. Water, Air, Soil Pollut. 94: 1-32.
Uluturhan, E. and Kucuksezgin, F. (2007). Heavy metal contaminants in Red Pandora (Pagelluserythrinus) tissues from the Easter Aegean Sea, Turkey. Water Research, 41, 1185–1192.
Valavanidis, A.;Vlahogianni, T.; Dassenakis, M. andScoullos. M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicol Environ Saf; 64(2):178-189.
Vidal-Liñán, L.;Bellas, J.;Campillo, J.A. and Beiras, R. (2010). Integrated use of antioxidant enzymes in mussels, Mytilus galloprovincialis, for monitoring pollution in highly productive coastal areas of Galicia (NW Spain). Chemosphere; 78(3):265-272.
Villaescusa, J. A; Gutiérrez, E. A., & Flores, G. (2000). Heavy metals in the fine fraction of coastal sediments from Baja California (Mexico) and California (USA). Environmental Pollution, 108, 453–462. http://dx.doi.org/10.1016/S0269-7491(99)00222-5
Zhu, Y. ;Kalen, A. L.; Li, L. and Lehmler, H.J.; Robertson, L. W.; Goswami, P. C.; Spitz, D. R. &Burns, N. A. (2009).Polychlorinated-biphenyl-induced oxidative stress and cytotoxicity can be mitigated by antioxidants after exposure. Free Radic Biol Med. 2009; 47(12):1762-1771.