Effects of white vinegar on Carbohydrate Contents in Hepatorenal Tissues in Rats.
DOI:
https://doi.org/10.37375/sjfssu.v1i2.102Keywords:
White vinegar, Carbohydrate contents, Liver, Kidney, Rats.Abstract
White vinegar is mildly acidic with a pH of 2-3 that has long been used as a relish and traditional medication that depends on its concentration. Yet even a small amount of white vinegar in a small concentration may cause serious poisoning. Recently, many sorts of white vinegar have been developed using fundamental sources and technologies to satisfy customer needs. This study was aimed to investigate the effects of white vinegar on carbohydrate contents in hepatorenal tissues in rats. Thirty female rats were used, they were divided into three groups, group 1 was given distilled water as the normal control group, group 2 was given white vinegar with a dose (1 ml/kg (5 %)) and group 3 was given white vinegar with a dose (1 ml/kg (10 %)) for two weeks. PAS stain in all treated tissues showed a decrease in carbohydrate contents when compared with the control group. In conclusion, white vinegar consumption has adverse effects on carbohydrate contents in hepatic and renal tissues in rats, hence the quantity of white vinegar should be discouraged or reduced.
References
Abd-Allah ARA, Aly HAA, Moustafa AMA, Abdel-Aziz HAA, Hamada FAM. (2000). Adverse testicular effects of some quinolone members in rats. Pharmaco. Res. 41 (2): 211-219. doi: 10.1006/phrs.1999.0580.
Abdellatif, NA. (2013). Protective effect of Nigella sativa against diabetic complications on the liver in white male rats. EJHM. 31 (914): 1-11. doi: 10.12816/0001669
Al-Hamdany MZ, Al-Hubaity AY (2014) The histological and histochemical changes of the rat's liver induced by 5-fluorouracil. IJVS. 28 (2): 95-103. doi:10.33899/ijvs.2014.116958
Al-Rouby NM, Gawish SM. (2013). Histological study on the possible protective effect of Nigella sativa oil on experimentally induced hepatotoxicity in albino rats treated with sodium valproate. GARJMMS. 2 (4): 90-99.
Chibishev, A. Sikole, A. Pereska, Z. Chibisheva, V. Simonovska, N. Orovchanec, N. (2013). Severe renal function impairment in adult patients acutely poisoned with concentrated acetic acid. Arh Hig Rada Toksikol. 64 (1): 153-158. doi: 10.2478/10004-1254-64-2012-2275.
Dröge, W. (2002). Aging-related changes in the thiol/disulfide redox state: Implications for the use of thiol antioxidants. Exp. Gerontol. 37: 1333-1345. doi:10.1016/S0531-5565(02)00175-4.
Drury, RAV. Wallington, EA. (1980). Carlton’s histological techniques (5th). Oxford University Press, New York, Toronto, USA.
Eid JI, Eissa SM, El-Ghor AA. (2015). Bisphenol A induces oxidative stress and DNA damage in hepatic tissue of female rat offspring. JOBAZ. 71: 10-19. doi:10.1016/j.jobaz.2015.01.006
Fushimi, T. Sato, Y. (2005). Effect of acetic acid feeding on the circadian changes in glycogen and metabolites of glucose and lipid in liver and skeletal muscle of rats. Br. J. Nutr. (94): 714-719. doi:10.1079/bjn20051545
Glaumann, H. Fredzell, J. Jubner, A. Ericsson, J. (1979). Uptake and degradation of glycogen by Kupffer cells. Exp. Mol. Pathol. 31 (1): 70-80. doi:10.1016/0014-4800 (79) 90008-x
Granneman, G. Wang, S. Kesterson, J. Machinist, J. (1984). The hepatotoxicity of valproic acid and its metabolites in rats. II. Intermediary and valproic acid metabolism. J Hepato. 4 (6): 1153-1158. doi:10.1002/hep.1840040610
Hasan, MN. Khan, RA. Nasiruddin, M. Khan, AA. (2016). Ameliorative effect of Nigella sativa oil against paracetamol induced hepatic and renal damages in rats. IJPR. (13): 1-10. doi:10.9734/BJPR/2016/27597
Kumar, V. Fausto, N. Abbas, A. (2004). Robbins and Cotran Pathologic Basis of Disease." 7th Ed. Elsevier Saunders.
Mahmoodi, M. Hosseini-zijoud, SM. Nabati, S. Modarresi, M. Mehrabian, M. Sayyadi, A. Hajizadeh, M. (2013). The effect of white vinegar on some blood biochemical factors in type 2 diabetic patients. J. Diabetes Endocrinol. 4 (1): 1-5. doi: 10.5897/JDE12.015
Nakhaee, A. Bokaeian, M. Saravani, M. Farhangi, A. Akbarzadeh, A. (2009). Attenuation of oxidative stress in streptozotocin-induced diabetic rats by Eucalyptus globulus. Indian J. Clin. Biochem. 24: 419-425. doi: 10.1007/s12291-009-0075-1
Okabe, S. Amagase, K. (2005). An overview of acetic acid ulcer models-the history and state of the art of peptic ulcer research. Biol. Pharm. Bull. 28, 1321-41. doi: 10.1248/bpb.28.1321
Pastrelo, MM. Ribeiro, CCD. Duarte, JW. Gollücke, APB. Artigiani-Neto, R. Ribeiro, DA. Miszputen, SJ. Oshima, CTF. Paiotti, APR. (2017). Effect of concentrated apple extract on an experimental colitis induced by acetic acid. IJMCM. 6 (1): 38-49. doi:10.22088/acadpub.BUMS.6.1.38
Rai, S. Halder, C. (2003). Pineal control of immune status and hematological changes in blood and bone marrow of male squirrels (Funambulus pennanti) during their reproductively active phase. Comp. Biochem. Physiol. C. Toxicol. Pharmacol. (136): 319-328. doi: 10.1016/j.cca.2003.10.008.
Seghrouchni I, Drai J, Bannier E, Riviere J, Calmard, P (2002). Oxidative stress parameters in type I, type II and insulin-treated type 2 diabetes mellitus; insulin treatment efficiency. Clin. Chim. Acta. 321: 89-96. doi: 10.1016/s0009-8981(02)00099-2.
Selvakumar, E. Prahalathan, C. Mythili, Y. Varalakshmi, P. (2005). Beneficial effects of DL-a-lipoic acid on cyclophosphamide induced oxidative stress in mitochondrial fractions of rat testis. Chem. Biol. Interact. 152 (1): 59-66. doi: 10.1016/j.cbi.2005.01.009.
Souza, MMD. Aguilar-Nascimento, JED. Gomes-Da-Silva, MH. Junior, RC. (2007). Effects of budesonide and probiotics enemas on the colonic mucosa of rats with experimental colitis. Acta. Cir. Bras. 22 (1): 34-38. doi: 10.1590/s0102-86502007000100006
Soykan, D. Muzaffer, C. Giray, A. Erdinc, Y. Semra, H. Mohanraj, R. (2015). Methylene blue inhibits the inflammatory process of the acetic acid-induced colitis in rat colonic mucosa. Int. Surg. (100): 1364-1374. doi: 10.9738/INTSURG-D-15-00118.1.
Thérond, P. Bonnefont-Rousselot, D. Davit-Spraul, A. Conti, M. Legrand, A. (2000). Biomarkers of oxidative stress: An analytical approach. Curr. Opin. Clin. Nutr. Metab Care. 3 (5): 373-384. doi: 10.1097/00075197-200009000-00009.