Evaluation of Pomegranate Peel as Bioadsorbent for the Removal of Lead Ions from Aqueous Solutions Using Phytoadsorption Technique
DOI:
https://doi.org/10.37375/sjfssu.v4i2.2734Keywords:
Lead heavy metals, Phytoremediation, Phytoadsorption, Pomegranate peels, Bioadsorbent.Abstract
Removal of toxic heavy metals from ecosystems is a challenge. Looking for green solutions is always required. Phytoremediation is one of the most powerful, efficient, and sustainable methods. However, phytoadsorption approach was emerged in the last two decades as a potential, cheap, and benign method for the clean up of contaminated aquatic systems from heavy metals. We have investigated the potential of dry pomegranate peels as biosorbent to remove lead ions from their aqueous solutions using the phytoadsorption technique. Different amounts of the dead biomass (5.0, 2.0, and 0.5 g) at varied shaking rates of 400, 600, 800 OSC/min and three periods of contact time were applied. The resulting observations of all experiments showed that the dry pomegranate peels were able to remove up 91.1% of Pb2+ ions from their 1000-ppm aqueous solutions at room temperature and neutral pH. In addition, the pomegranate peel as a bioadsorbent has showed an adsorption capacity up to 96.1 mg/g. Consequently, the pomegranate peels can be used as potential bioadsorbents for the removal of lead heavy metal from the contaminated aquatic systems.
References
Al-Khazan, M. M. & Al-Zlabani, R. M. (2019). Toxic materials phytoremediation potential of four common trees in Saudi Arabia: A review. Egypt. J. Exp. Biol. (Bot.), 15 (1), 87-97. doi:10.5455/egyjebb.20190225102702
Ben-Ali, S., Jaouali, I., Souissi-Najar, S., & Ouederni, A. (2017). Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal. Journal of Cleaner Production, 142, 3809–3821. https://doi.org/10.1016/j.jclepro.2016.10.081
Caito, S. & Aschner, M. (2015). Neurotoxicity of metals. Handbook of Clinical Neurology, 131,169–189.
Clarkson, T. W. (1987). Metal Toxicity in the Central Nervous System. Environ. Health Perspect., 75, 59‒64.
Dube, D. & Chingoma, C. (2016). Removal of Heavy Metal Ions from Household Drinking Water Using Acacia Galpinii Seeds and Seed Pods J. Health Pollution, 6, 7‒14.
Dubey, A., Mishra, A. & Singhal, S. (2014). Application of dried plant biomass as novel low-cost adsorbent for removal of cadmium from aqueous solution Int. J. Environ. Sci. Technol., 11, 1043–1050.
El-Ashtoukhy, E.-S. Z., Amin, N.K. & Abdelwahab, O. (2008). Removal of lead (II) and copper (II) from aqueous solution using pomegranate peel as a new adsorbent. Desalination, 223, 162–173.
Etorki, A.M., El-Rais, M., Mahabbis, M.T. & Moussa, N.M. (2014). Removal of Some Heavy Metals from Wastewater by Using of Fava Beans. Am. J. Anal. Chem., 5, 225‒234.
Huynh, A. T., Chen, Y. C. & Tran, B. N. T. (2021). A Small-Scale Study on Removal of Heavy Metals from Contaminated Water Using Water Hyacinth. Processes, 9, 1802.
Karman, S. B., Diah S.Z.M. & Gebeshuber, I.C. (2015). Raw Materials Synthesis from Heavy Metal Industry Effluents with Bioremediation and Phytomining: A Biomimetic Resource Management Approach. Advances in Materials Science and Engineering, Volume 2015, Article ID 185071, 21 pages.
Kumar, M., Seth, A., Singh, A. K., Rajput, M. S. & Sikandar, M. (2021). Remediation strategies for heavy metals contaminated ecosystem: A review. Environ, Sustain. Indicators, 12, 100155.
McGrath, S.P., Lombi, E., Gray, C.W., Caille, N., Dunham, S.J. & Zhao, F.J. (2006). Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis helleri. Environ. Pollut., 141, 115–125.
Mitra, S., Chakraborty, A. J., Tareq, A., Emran, T. B., Nainu, F., Khusro, A., Idris, A. M., Khandaker, M. U., Osman, H., Alhumaydhi, F. A. & Simal-Gandara, J. (2022). Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ. Sci., 34, 101865.
Nedjimi, B. (2021). Phytoremediation: a sustainable environmental technology for heavy metals decontamination. SN Applied Sciences, 3, 286.
Pandey, G. & Madhuri, S. (2014). Heavy Metals Causing Toxicity in Animals and Fishes. Res. J. Animal, Veterinary and Fishery Sci., 2, 17‒23.
Prasad, M. N. V. and Freitas, H. (2000). Removal of toxic metals from solution by leaf, stem and root phytomass of Quercus ilex L. (holly oak). Environ. Pollut., 110, 277–283.
Probst, A., Liu, H., Fanjul, M., Liao, B. & Hollande, E. (2009). Response of Vicia faba L. to metal toxicity on mine tailing substrate: Geochemical and morphological changes in leaf and root. Environmental and Experimental Botany, 66, 297–308.
Rajakaruna, N., Tompkins, K. M. & Pavicevic, P. G. (2006). Phytoremediation: An Affordable Green Technology for the Clean-up of Metal-Contaminated Sites in Sri Lanka. Cey. J. Sci. (Bio. Sci.), 35, 25–39.
Ramadan, W. F. and Balah, M. A. (2022). The use of some weeds type in the disposal of heavy metals in contaminated soil. Saudi Soc. Agri. Sci., 21, 289–295.
Rashed, M. K. & Tayh, W. (2020). Removal of Heavy Metals from Wastewater Using Pomegranate Peel. IOP Conf. Ser.: Mater. Sci. Eng., 881, 012187.
Redha, A. A. (2020). Removal of heavy metals from aqueous media by biosorption. Arab J. Basic Appl. Sci., 27, 183‒193.
Sabreena, H.S., Bhat, S. A., Kumar,V., Ganai, B. A. & Ameen, F. (2022). Phytoremediation of Heavy Metals: An Indispensable Contrivance in Green Remediation Technology. Plants, 11, 1255.
Sekhar, K. C., Kamala, C., Chary, N., & Anjaneyulu, Y. (2003). Removal of heavy metals using a plant biomass with reference to environmental control. International Journal of Mineral Processing, 68(1–4), 37–45. https://doi.org/10.1016/s0301-7516(02)00047-9
Sharif, S. A., El-Moghrabi, H. A. M. N., El-Mugrbi, W. S. & Alhddad, A. I. (2023). Fava Beans (Vicia faba L.) Phytosorption of Pb2+ Ions from its Aqueous Solutions. Asian Journal of Green Chemistry, 7, 85‒90.
Sharif, S. A., El-Mugrbi, W. S., Alhddad, A. I. El-Moghrabi, H. A. M. N., Elarfy A. R. & Alshahopy, N. A. (2023). Removal of Toxic Lead Ions from their Aqueous Solutions Using Fava Beans Phytoadsorption Technique. AlQalam Journal of Medical and Applied Sciences. Special Issue for 6th International Conference in Basic Sciences and Their Applications (6th ICBSTA, 2023), P: 71‒86, 2/12/2023.
Sharif, S. A., El-Mugrbi, W. S., El Moghrabi, H. A. M. N., Mostafa, M. A. B., Al Sharkasi, A., Al Hussein, R. B. A.-H., and Abubakr, K. A. (2024). Evaluation of Empty Fava Beans Pods as Bioadsorbent for the Removal of Pb2+ from Aqueous Solutions Using Phytoadsorption Technique. Al-Mukhtar Journal of Basic Sciences, 22, 114‒122.
Sharma, J. K., Kumar, N. Singh, N. P. & Santal, A. R. (2023). Phytoremediation technologies and their mechanism for removal of heavy metal from contaminated soil: An approach for a sustainable environment. Front. Plant Sci., 14, 1076876.
Shartooh, S.M., Al-Azzawi, M.N.A. & Al-Hiyaly, S.A.K. (2013). Pomegranate Peels as Biosorbent Material to Remove Heavy Metal Ions from Industerial Wastewater. Iraqi Journal of Science, 2013, 54, 4, 823–831.
Saharty, A. A. (2014). Phytoremediation of Heavy Metals from Wastewater Using Bean Plants. Biosciences Biotechnology Research Asia, 11(3), 1373–1380. https://doi.org/10.13005/bbra/1529
Srivastava, S., Mishra, S., Dwivedi, S., Baghel, V. S., Verma, S., Tandon, P. K., Rai, U. N. & Tripathi, R. D. (2005). Nickel Phytoremediation Potential of Broad Bean, Vicia faba L., and Its Biochemical Responses. Bull. Environ. Contam. Toxicol., 74, 715–724.
Suman, J., Uhlik, O., Viktorova, J. & Macek, T. (2018). Phytoextraction of Heavy Metals: A Promising Tool for Clean-Up of Polluted Environment? Front. Plant Sci., 9, 1476.
Sumiahadi, A. & Acar, R. (2018). A review of phytoremediation technology: heavy metals uptake by plants. IOP Conf. Series: Earth and Environmental Science, 142, 012023.
Tang, L., Hamid, Y., Zehra, A., Sahito, Z. A., He, Z., Hussain, B., Gurajala, H. K. & Yang, X. (2019). Characterization of fava bean (Vicia faba L.) genotypes for phytoremediation of cadmium and lead co-contaminated soils coupled with agro-production. Ecotoxicology and Environmental Safety, 171, 190–198.
Tangahu, B. V., Sheikh Abdullah, S. R. S., Basri, H., Idris, M., Anuar, N. & Mukhlisin, M. (2011). A Review on Heavy Metals (As, Pb, and Hg) Uptake by Plants through Phytoremediation. Int. J. Chem. Eng., Article ID 939161, 31 pages.
Waoo, A. A., Khare, S. & Ganguli, S. (2014). Comparative Tissue Culture Studies on Lantana Camara and Datura Inoxia at Heavy Metal Contaminated Site and Phytoremediation Approach at Industrial Contaminated Sites. Int. J. Adv. Biol., 1, 55–62.
Yan, A., Wang, Y., Tan, S. N., Mohd Yusof, M. L., Ghosh, S. & Chen, Z. (2020). Phytoremediation: A Promising Approach for Revegetation of Heavy Metal-Polluted Land. Front. Plant Sci., 11, 359.
Zaynab, M., Al-Yahyai, R., Ameen, A., Sharif, Y., Ali, L., Fatima, M., Khan, K. A. & Li, S. (2022). Health and environmental effects of heavy metals. J. King Saud Univ. Sci., 34, 101653.
Zhi-xin, N., Li-na, S., Tie-heng, S., Yu-shuang, L. & Hong, W. (2007). Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J. Environ. Sci.,19, 961–967.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientific Journal for Faculty of Science-Sirte University
This work is licensed under a Creative Commons Attribution 4.0 International License.