Comparison Between Median Filter and Wiener Filter to Get High Accuracy for Blood Vessel Image Extraction
DOI:
https://doi.org/10.37375/sjfssu.v1i1.74Keywords:
Segmentation, Computer Vision, Image Processing, Filtration.Abstract
With today's advancing technology, support of developing hardware and software systems, the developments in the field of medicine have increased considerably. In particular, medical image analysis and processing systems have taken a considerable lead. The development of an automatic system could provide great convenience for doctors and practitioners in the field. The image processing techniques proposed in this study can contribute to more effective analysis and more accurate diagnosis, regardless of the individual levels of experience of the users or particular situations and conditions such as fatigue or image quality. This paper presents a robust method for retinal blood vessel segmentation and some automatic algorithms for analyzing the vessel network and pixel classification into vessel and non-vessel .The aim of the work extraction or segmentation of retinal blood vessels used computer vision and image processing for getting high accuracy (comparison with manual) .Also We used the preprocessing techniques for enhancement of the image .And used two types of filter for comparing result to get best scenario. Also for simulation result we used the matlab and implement on DRIVE database.
References
Akram, M. U., & Khan, S. A. (2013). Multilayered thresholding-based blood vessel segmentation for screening of diabetic retinopathy. Engineering with computers, 29(2), 165-173.
Al-Rawi, M., Qutaishat, M., & Arrar, M. (2007). An improved matched filter for blood vessel detection of digital retinal images. Computers in biology and medicine, 37(2), 262-267.
Ali, A., Zaki, W. M. D. W., & Hussain, A. (2017). Blood vessel segmentation from color retinal images using K-means clustering and 2D gabor wavelet. Paper presented at the International Conference on Applied Physics, System Science and Computers.
Ali, K., Jalil, A., Gull, M. U., & Fiaz, M. (2011). Medical image segmentation using h-minima transform and region merging technique. Paper presented at the Frontiers of Information Technology (FIT), 2011.
Badsha, S., Reza, A. W., Tan, K. G., & Dimyati, K. (2013). A new blood vessel extraction technique using edge enhancement and object classification. Journal of digital imaging, 26(6), 1107-1115.
Bhuiyan, A., Nath, B., Chua, J., & Kotagiri, R. (2007). Blood vessel segmentation from color retinal images using unsupervised texture classification. Paper presented at the Image Processing, 2007. ICIP 2007. IEEE International Conference on.
Eladawi, N., Elmogy, M., Helmy, O., Aboelfetouh, A., Riad, A., Sandhu, H., . El-Baz, A. (2017). Automatic blood vessels segmentation based on different retinal maps from OCTA scans. Computers in biology and medicine, 89, 150-161.
Fan, Z., Lu, J., & Rong, Y. (2016). Automated blood vessel segmentation of fundus images using region features of vessels. Paper presented at the Computational Intelligence (SSCI), 2016 IEEE Symposium Series on.
Fawcett, T. (2006). An introduction to ROC analysis. Pattern recognition letters, 27(8), 861-874.
Fraz, M. M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A. R., Owen, C. G., & Barman, S. A. (2012). Blood vessel segmentation methodologies in retinal images–a survey. Computer methods and programs in biomedicine, 108(1), 407-433.
Lam, B. S., Gao, Y., & Liew, A. W.-C. (2010). General retinal vessel segmentation using regularization-based multiconcavity modeling. IEEE Transactions on medical imaging, 29(7), 1369-1381.
Marín, D., Aquino, A., Gegúndez-Arias, M. E., & Bravo, J. M. (2011). A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features. IEEE Transactions on medical imaging, 30(1), 146-158.
Miri, M. S., & Mahloojifar, A. (2011). Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction. IEEE Transactions on Biomedical Engineering, 58(5), 1183-1192.
Nguyen, U. T., Bhuiyan, A., Park, L. A., & Ramamohanarao, K. (2013). An effective retinal blood vessel segmentation method using multi-scale line detection. Pattern recognition, 46(3), 703-715.
Rahebi, J., & Hardalaç, F. (2014). Retinal blood vessel segmentation with neural network by using gray-level co-occurrence matrix-based features. Journal of medical systems, 38(8), 85.
Ricci, E., & Perfetti, R. (2007). Retinal blood vessel segmentation using line operators and support vector classification. IEEE Transactions on medical imaging, 26(10), 1357-1365.
Roychowdhury, S., Koozekanani, D. D., & Parhi, K. K. (2015). Blood vessel segmentation of fundus images by major vessel extraction and subimage classification. IEEE journal of biomedical and health informatics, 19(3), 1118-1128.
Shah, S. A. A., Tang, T. B., Faye, I., & Laude, A. (2017). Blood vessel segmentation in color fundus images based on regional and Hessian features. Graefe's Archive for Clinical and Experimental Ophthalmology, 1-9.
Soares, J. V., Leandro, J. J., Cesar, R. M., Jelinek, H. F., & Cree, M. J. (2006). Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification. IEEE Transactions on medical imaging, 25(9), 1214-1222.
Staal, J., Abràmoff, M. D., Niemeijer, M., Viergever, M. A., & Van Ginneken, B. (2004). Ridge-based vessel segmentation in color images of the retina. IEEE transactions on medical imaging, 23(4), 501-509.
Wright, L., Young, R., Read, S., & Chang, E. (2018). Fluorescein Angiographic Evaluation of Peripheral Retinal Vasculature after Primary Intravitreal Ranibizumab for Retinopathy of Prematurity. Retina (Philadelphia, Pa.).
Xu, L., & Luo, S. (2010). A novel method for blood vessel detection from retinal images. Biomedical engineering online, 9(1), 14.
Zhang, B., Zhang, L., Zhang, L., & Karray, F. (2010). Retinal vessel extraction by matched filter with first-order derivative of Gaussian. Computers in biology and medicine, 40(4), 438-445.
Dolz-Marco, R., Gallego-Pinazo, R., Dansingani, K. K., & Yannuzzi, L. A. (2017). The history of the choroid. In J. Chhablani & J. Ruiz-Medrano (Eds.). Choroidal Disorders, 1(5), 1-5. Academic Press. https://doi.org/0.1016/b978-0-12-805313-3.00001-6