Rate Constants and Rheological Properties of the Ultrasonic Degradation of Carboxymethyl Cellulose

Authors

  • Hitham M. Abuissa Chemistry Department, Science Faculty, Ajdabiya University, Ajdabya, Libya

DOI:

https://doi.org/10.37375/sjfssu.v1i1.114

Keywords:

Carboxymehtyl cellulose, Ultrasonic degradation, Viscosity, Rate constant.

Abstract

To degrade the polysaccharide with high molecular weight the effectiveness of ultrasound for carboxymethyl cellulose (CMC) in aqueous solution has been studied at a time of 60 min and temperature of 25 ̊C and for polymer solution with concentration up 0.1 g/L. The Huggins equation was appropriate to apply to the intrinsic viscosity of CMC before sonication to understand the influence of salt on degradation, CMC solution was premixed with 0.1 M NaCl, before ultrasonication. Developed a kinetic model, successfully implement to predict and quantify rates of degradation and efficiency. The values of reaction rate constants and reaction orders were found related to the salt and the concentration used, suggesting that, the presence and absence of salts could increase or decrease the degradation by ultrasonic radiation through adjusting the molecular conformation of CMC

References

Ahlgren, J. A (1993). Characterization of xanthan gum degrading enzymes from a heat-stable , salt, tolerant bacterial consortium. Develop. Petro. Sci. 39: 55-63. doi:10.1016/S0376-7361(09)70049-4

Antti,G.; Pentti, P.; Hanna K (2008). Ultrasonic degradation of equeous carboxymethyl cellulose: effect of viscosity molecular mass, and concentration. Ultrason. Sonochem. 15: 644-648.doi:10.1016/j.ultsonch.2007.09.005

Bajpai, A. K; Giri, A (2003). Water sorption behavior of high swilling (carboxymethyl cellulose-g-Polyacrylamide) hydrogels and release of potassium nitrate as a grochemical. Carbohydr. Polym.53: 271-279. doi:10.1016 /S0144-8617(03)00071-7

Basedow, A. M.; Ebret, K. H.; (1977). Ultrasonic degradation of polumers in solution. Adv. Polym. Sci. 22: 83-148. doi:10.1007/3-540-07942-4_6

Capitani, D.; Porro, F.; serge, A. L (2000). High field NMR analysis of the degree of substitution in carboxymethyl cellulose sodium salt Carbohydr. Polym. 42: 283-286. doi:10. 1016/S0144-8617(99)00173-3

Christensen, B. E.; Smidsroed, O.; Elgseater, A.; Stokke, B. T(1993). Depolymerization of double-stranded xanthan by acid hydrolysis: Characterization of partially degraded double strands and single-stranded oligomers relased from the ordered structures. Macromolecules. 26: 6111-6120. doi:10.1021/ma00074a037

Clasen, C.; kulicke, W. M (2001). Determination of viscoelastic and rheo-optical material functions of water-soluble cellulose derivatives. Prog. Polym. Sci. 26:1839-1919. doi:10.1016/S0079-6700(01)00024-7

Elliot J H, Ganz A J (1974) Some rheological properties of sodium carboxymethyl cellulose solutions and gels. Rheol. Acta. 13: 670-674. doi:10.1007/ BF 01527058

Guo, J. H.; Skinner, G. W; Harcum, W. W.; Barnum, P. E (1998). Pharmaceutical applications of naturally occurring water-soluble polymers..Pharm. Sci. Technol. To. 1: 254-261. doi:10.1016/S1461-5347(98)00072-8

Kokol, V (2002). Interactions between Polysaccharide polymer thickener and bifunctional bireactive dye in the presence of nonionic surfactants Part1 , surface tension and rheological behavior of different polysaccharide solution. Carbohydr. Polym. 50: 227-236. doi:10.1016/S0144-8617(02) 00035-8

Lakshmi, D. S.; Trivedi, N.; Reddy, C. R. K (2017). Synthesis and characterization of seaweed cellulose derived carboxymethyl cellulose. Carbohydr. Polym. 157: 1604-1610. doi:10.1016/j.carbpol.2016.11.042

Lund, T.; Lecourtier, J.; Muller, G (1990). Properties of xanthan solutions after long-term heat treatment at 900C. Polym. Degrad. Stabil. 27: 211-225. doi:org/10.1016/0141-3910 (90)90110-S

Milas, M.; Rinando, M.; Tinland, B (1986). Comparative depolymerization of xanthan gum by ultrasonic and enzymic treatments. Rheological and structural properties. Carbohydr. Polym.6: 95-107. doi:10. 1016/ j.polymdegradstab.2011.01.026

Mohod, A. V.; Gogate, P. R (2011). Ultrasonic degradation of polumers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and polyvinyl alcohol (PVA). Ultrason. Sonochem .18: 727-734. doi:10. 1016/j.ultsonch.2010.11.002

Muchovà, M.; Ruźićka, J.; Julinorà, M.; Doleźalovà, M.; Houser, J.; Koutny, M.; Bunkovà, L (2009). Xanthan and gellan degradation by bacterial of activated sludge. Water Sci. Technol. 60: 965-973. doi:10.2166 /wst. 2009.443

Mulet, A.; Carel, J.; Benedito, J.; Rossello, C.; Simal, S (2002). Ultrasonic mass transfer enhancement in food processing. In J.Welti-Chanes & J.F. Velez-Ruiz (Eds.), Transport phenomena in food processing. Boca Raton: CRC press. pp, 265-277.

Pourjavadi, A.; Barzegar, Sh.; Mahdavinia, GR (2006). MBA-cross linked Na-Alg/CMC as smart Full-Polysaccharide Superabsorbent hydrogels. Carbohydr. Polym. 66: 386-395. doi:10. 1016 /j. carbpol.2006.03.013

Reynolds, M. A.; Aichelmann-Reidy, M. E.; Kasslois, J. D.; Parsad, H. S.; Dohrer, M. D(2007). Calcium Sulfate- carboxymethyl cellulose bone graft binder: Histologic and morphometeric evaluation in critical size defect. J. Biomed. Mater. Res. B. Appl. Biomater. Part B: Appl. Biomater. 83: 451-458. doi:10.1002/jbm.b.30815

Sakairi, N.; Suzuki, S.; Uneo, K.; Han, S.; Nishi, N.; Tokura, S (1998). .Biosynthesis of netero- Paysaccharides by acetobacterxylinum-synthesis and characterization of metal-ion adsorptive properties of partially carboxymethylated cellulose Carbohydr. Polym. 37: 409-414. doi:10.1016/S0144-8617 (97) 00226-9

Samant, S. K.; Singhal, R. S.; Kullkarni, P. R.; Regga, D. V (1993). Protein Polysaccharide interaction : A new approach in food formulation. Int. J. Food Sci. Technol. 28: 457-562. doi:10. 1016/S0144-8617(99) 00173-3

Santa-Comba, A.; Pereira, A.; Lemos, R.; Santos, D.; Amarante, J.; Pinto, M (2001). Evaluation of carboxymethyl cellulose, hydroxypropyl methly cellulose, and aluminum hydroxide as potential carriers for rhBMP-2. J. Biomed. Mater. Res. 55: 396-400. doi: 10.1002/1097-4636(20010605) 55:33 .0.CO; 2-Q

Soares, R. M. D.; Lima, A. M. F.; Olivera, R. V. B.; Pires, A. T. N.; Soldi, V (2005). Thermal degradation of biodegradable edible films based on xanthan and starches from different sources. Polym. Degrade. Stabil. 90: 449-454. doi:10.1016/j.polymdegradstab. 2005. 04.007

Srivastava, A.; Mishra, V.; Singh, P.; Srivastava, A.; Kumar, R (2012) .Comparative study of thermal degradation behavior of graft copolymers of Polysaccharides and vinyl monomers. J. Therm. Anal. Cal. 107: 211-223. doi:10.1007/s10973-011-1921-y.

Taghizadeh, M. T.; Mehrdad, A (2003). Calculation of the rate constant for the ultrasonic degradation of equeous solutions of polyvinyl alcohol by viscometry. Ultrason. Sonochem.. 10: 309-313. doi:10.1016/ S 1350-4177(03)00110-X

Taghizadeh, M. T.; Abdullahi, R (2011). Sonolytic, Sonocatalytic and sonophotocatalytic degradation of chitosan in presence of TiO2. Ultrason. Sonochem. 18: 149-157. doi:10. 1016/j.ultsonch.2010.04.004

Zaleska, H.; Ring, S.; Tomasik, P )2001). Electosynthesis of potato starch-whey protein isolate complexes. Carbohydr. Polym. 45: 89-94. doi:10.1016/S0144-8617 (00)00239-3

Zaleska, H.; Ring, S.; Tomasik, P )2001). Electosynthesis of potato starch-casein complexes. Int. J. Food Sci. Technol. 36:509-515. doi:10.1046 /j.1365-2621.2001.00491.x

White, J. L.; Kim, K. J (2008). Thermoplastic and rubber compounds: Technology and physical chemistry. Munich: carl Hancer verlag.pp. 119-125.

Downloads

Published

2021-10-28

How to Cite

Abuissa, H. M. (2021). Rate Constants and Rheological Properties of the Ultrasonic Degradation of Carboxymethyl Cellulose. Scientific Journal for Faculty of Science-Sirte University, 1(1), 32–38. https://doi.org/10.37375/sjfssu.v1i1.114