The Effect of Poultry Manure on Growth, and Yield of Tomatoes (Lycopersicon esculentum mill) Cultivated in Salt Marsh Soil.
DOI:
https://doi.org/10.37375/sjfssu.v3i2.1633Keywords:
Salinity, Treated poultry manure, Cherry tomato, Growth, Yield, Ions.Abstract
The tomato is an important, popular, and versatile vegetable in the world and ranks number one in its contribution to the diet. One of the most common land degradation processes that affect agricultural production is soil salinization; however, organic production can be utilized to reduce the effect of salinity on many plants. The study aims to investigate the effect of different concentrations (0.25, 31, 38, and 44%) of poultry manure (PM) on cherry tomato plants grown in marsh soil and to study the effectiveness of fertilizer in improving soil properties. The results showed that the application of PM in marsh soil increased plant height, root length, fresh and dry weight, the number of flowers and fruits, and shoot potassium concentration, while shoot sodium concentration decreased. The present study concluded that treating salt marsh soil with PM levels, especially with PM4, could reduce salinity stress damage on cherry tomato plants, increase biomass production, and improve soil properties.
References
Abusuwar, A. O., & El Zilal, H. A. (2010). Effect of chicken manure on yield, quality and HCN concentration of two forage Sorghum (Sorghum bicolor (L) Moench) cultivars. Agric. Biol. JN Am, 1(1), 27-31. , http://www.scihub.org/abjna
Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Diaz-Vivancos, P., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: adaptive mechanisms. Agronomy, 7(1), 18. https://doi.org/10.3390/agronomy7010018
Agbede, T., Ojeniyi, S., & Adeyemo, A. (2008). Effect of poultry manure on soil physical and chemical properties, growth and grain yield of sorghum in southwest, Nigeria. American-Eurasian journal of sustainable agriculture, 2(1), 72-77. https://link.gale.com/apps/doc/A215515357/AONE?u=anon~202944&sid=googleScholar&xid=57f768b4
Akanni, D. (2005). Response of nutrient composition and yield components of tomato (Lycopersicon esculentum Mill) to livestock manure. Unpublished Ph. D. Thesis, Federal University of Technology, Akure, Nigeria, 120pp.
Alghobar, M. A., & Suresha, S. (2017). Evaluation of metal accumulation in soil and tomatoes irrigated with sewage water from Mysore city, Karnataka, India. Journal of the Saudi Society of Agricultural Sciences, 16(1), 49-59. https://doi.org/10.1016/j.jssas.2015.02.002
Amao, I. (2018). Health benefits of fruits and vegetables: Review from Sub-Saharan Africa. Vegetables: importance of quality vegetables to human health, 22, 33-53.
Assoul, M. M., Elgubbi, H. S., Aljarroushi, M. M., & Zourab, A. A. (2022). Vegetation and Environment in the Area Surrounding the Libyan Iron & Steel Company at Misrata, Libya. Multi-Knowledge Electronic Comprehensive Journal For Education And Science Publications( MECSJ ), 48. 1-17.
Ayeni, L., Omole, T., Adeleye, E., & Ojeniyi, S. (2010). Integrated application of poultry manure and NPK fertilizer on performance of tomato in derived savannah transition zone of southwest Nigeria. Sci. Nat, 8(2), 50-54.
Aziz, A., Khan, B. A., Tahir, M. A., Nadeem, M. A., Amin, M. M., Qura-Tul-Ain, M. A., Munawar, N., Hussain, A., Khisham10, M., & Danish, M. (2020). Effect of poultry manure on growth and yield of forage sorghum (Sorghum bicolor L.). Int J Botany Stud, 5(3), 401-406.
Brady, N. C., Weil, R. R., & Weil, R. R. (2008). The nature and properties of soils (Vol. 13). Prentice Hall Upper Saddle River, NJ.
Cao, Y., Gao, Y., Li, J., & Tian, Y. (2019). Straw composts, gypsum and their mixtures enhance tomato yields under continuous saline water irrigation. Agricultural water management, 223, 105721. https://doi.org/10.1016/j.agwat.2019.105721
Castiglione, S., Oliva, G., Vigliotta, G., Novello, G., Gamalero, E., Lingua, G., Cicatelli, A., & Guarino, F. (2021). Effects of compost amendment on glycophyte and halophyte crops grown on saline soils: Isolation and characterization of rhizobacteria with plant growth promoting features and high salt resistance. Applied Sciences, 11(5), 2125. https://doi.org/10.3390/app11052125
Cronquist, A. (1968). The evolution and classification of flowering plants. The evolution and classification of flowering plants.Book https://lccn.loc.gov/68004883
Dhyan, S., Chhonkar, P., & Pandey, R. (1999). Soil, Plant and water analysis-A method manual. IARI, New Delhi.
Direkvandi, S. N., Ansari, N. A., & Dehcordie, F. S. (2008). Effect of different levels of nitrogen fertilizer with two types of bio-fertilizers on growth and yield of two cultivars of tomato (Lycopersicon esculentum Mill). Asian Journal of Plant Sciences, 7(8), 757.
Disciglio, G., Gatta, G., Libutti, A., Gagliardi, A., Carlucci, A., Lops, F., Cibelli, F., & Tarantino, A. (2015). Effects of irrigation with treated agro-industrial wastewater on soil chemical characteristics and fungal populations during processing tomato crop cycle. Journal of soil science and plant nutrition, 15(3), 765-780. http://dx.doi.org/10.4067/S0718-95162015005000052
Ewulo, B., Ojeniyi, S., & Akanni, D. (2008). Effect of poultry manure on selected soil physical and chemical properties, growth, yield and nutrient status of tomato. African Journal of Agricultural Research, 3(9), 612-616.
Firdous, N. (2021). Significance of edible coating in mitigating postharvest losses of tomatoes in Pakistan: a review. Journal of Horticulture and Postharvest Research, 4(Special Issue-Fresh-cut Products), 41-54. https://doi.org/10.22077/jhpr.2020.3469.1152
Gee, G. W., & Or, D. (2002). 2.4 Particle‐size analysis. Methods of soil analysis: Part 4 physical methods, 5, 255-293.
Gondek, M., Weindorf, D. C., Thiel, C., & Kleinheinz, G. (2020). Soluble salts in compost and their effects on soil and plants: A review. Compost Science & Utilization, 28(2), 59-75. https://doi.org/10.1080/1065657X.2020.1772906
Group, A. P. (2009). An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of the Linnean Society, 161(2), 105-121.
https://doi.org/10.1111/j.1095-8339.2009.00996.x
Guo, X.-x., Liu, H.-t., & Zhang, J. (2020). The role of biochar in organic waste composting and soil improvement: A review. Waste Management, 102, 884-899. https://doi.org/10.1016/j.wasman.2019.12.003
Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Franceschini, M. H., Kramer, H., van Loo, E. N., Roman, V. J., & Finkers, R. (2019). UAV based soil salinity assessment of cropland. Geoderma, 338, 502-512. https://doi.org/10.1016/j.geoderma.2018.09.046
Kandil, H., & Gad, N. (2010). Response of tomato plants to sulphur and organic fertilizer. Int J Academic Res, 2, 204-210.
Kim, H., Jeong, H., Jeon, J., & Bae, S. (2016). Effects of irrigation with saline water on crop growth and yield in greenhouse cultivation. Water, 8(4), 127. https://doi.org/10.3390/w8040127
Kumar, S., Li, G., Yang, J., Huang, X., Ji, Q., Liu, Z., Ke, W., & Hou, H. (2021). Effect of salt stress on growth, physiological parameters, and ionic concentration of water dropwort (Oenanthe javanica) cultivars. Frontiers in plant science, 12, 660409. https://doi.org/10.3389/fpls.2021.660409
Luo, Q., Yu, B., & Liu, Y. (2005). Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. Journal of plant physiology, 162(9), 1003-1012. https://doi.org/10.1016/j.jplph.2004.11.008
Najat, M., Maizom, H., Zamri, Z., & Alhdad, G. (2018). Comparative study of quality changes in lowland transgenic RNAiACO1 (T2) tomato fruit during storage at ambient and low temperature. Int. J. Chemtech Res, 11(10), 75-89. http://dx.doi.org/10.20902/IJCTR.2018.111011
Ntagkas, N., de Vos, R. C., Woltering, E. J., Nicole, C. C., Labrie, C., & Marcelis, L. F. (2020). Modulation of the tomato fruit metabolome by LED light. Metabolites, 10(6), 266.
Ohlson, E. W., Ashrafi, H., & Foolad, M. R. (2018). Identification and mapping of late blight resistance quantitative trait loci in tomato accession PI 163245. The plant genome, 11(3), 180007. https://doi.org/10.3835/plantgenome2018.01.0007
Ors, S., Ekinci, M., Yildirim, E., Sahin, U., Turan, M., & Dursun, A. (2021). Interactive effects of salinity and drought stress on photosynthetic characteristics and physiology of tomato (Lycopersicon esculentum L.) seedlings. South African Journal of Botany, 137, 335-339. https://doi.org/10.1016/j.sajb.2020.10.031
Page, A., Miller, R., & Keeney, D. (1982). Methods of soil analysis. Part 2. Chemical and Microbiological properties 2nd ed. American Soc. of Agronomy, Inc. Soil Science Society of America, Inc. Madison, Wisconsin, USA, 1159.
Rayment, G., & Higginson, F. R. (1992). Australian laboratory handbook of soil and water chemical methods. Inkata Press Pty Ltd.
Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat. Sci, 17(1), 34-40. http://dx.doi.org/10.7537/marsnsj170119.06
Singh, P., Singh, D., Singh, A. K., Singh, B., & Singh, T. (2020). Growth and yield of tomato grown under organic and inorganic nutrient management. Int. J. Curr. Microbiol. App. Sci, 9(3), 365-375. https://doi.org/10.20546/ijcmas.2020.903.043
Soremi, A., Adetunji, M., Adejuyigbe, C., Bodunde, J., & Azeez, J. (2017). Effects of poultry manure on some soil chemical properties and nutrient bioavailability to soybean. Journal of Agriculture and Ecology Research International, 11(3), 1-10. https://doi.org/10.9734/JAERI/2017/32419
Ud Din, M. M., Khan, M. I., Azam, M., Ali, M. H., Qadri, R., Naveed, M., & Nasir, A. (2023). Effect of Biochar and Compost Addition on Mitigating Salinity Stress and Improving Fruit Quality of Tomato. Agronomy, 13(9), 2197. https://doi.org/10.3390/agronomy13092197
Xie, H., Zhang, Y., Wu, Z., & Lv, T. (2020). A bibliometric analysis on land degradation: Current status, development, and future directions. Land, 9(1), 28. https://doi.org/10.3390/land9010028
Zhang, Y., Liang, Y., Zhao, X., Jin, X., Hou, L., Shi, Y., & Ahammed, G. J. (2019). Silicon compensates phosphorus deficit-induced growth inhibition by improving photosynthetic capacity, antioxidant potential, and nutrient homeostasis in tomato. Agronomy, 9(11), 733. https://doi.org/10.3390/agronomy9110733
Zhu, T., Shao, T., Liu, J., Li, N., Long, X., Gao, X., & Rengel, Z. (2021). Improvement of physico-chemical properties and microbiome in different salinity soils by incorporating Jerusalem artichoke residues. Applied Soil Ecology, 158, 103791. https://doi.org/10.1016/j.apsoil.2020.103791
Zörb, C., Geilfus, C. M., & Dietz, K. J. (2019). Salinity and crop yield. Plant biology, 21, 31-38. https://doi.org/10.1111/plb.12884
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientific Journal for Faculty of Science-Sirte University
This work is licensed under a Creative Commons Attribution 4.0 International License.