Prediction and Analysis of Targeting Libyan Severe Acute Respiratory Syndrome Corona Virus 2 isolates by Micro-RNA

Authors

  • Marwa Alwash Department of Genetics and Biotechnology, Faculty of Science, Misurata University, Libya
  • Asma S. Alilish Department of Genetics and Biotechnology, Faculty of Science, Misurata University, Libya
  • Saad Aboulkasem Department of Genetics and Biotechnology, Faculty of Science, Misurata University, Libya
  • Maab M. Aldeeb Department of Genetics and Biotechnology, Faculty of Science, Misurata University, Libya
  • Mona M. Aborwis Department of Genetics and Biotechnology, Faculty of Science, Misurata University, Libya

DOI:

https://doi.org/10.37375/sjfssu.v3i2.1595

Keywords:

COVID-19, , Pandemic, MiRNAs, , Bioinformatics prediction

Abstract

The COVID-19 pandemic has caused widespread concern, and extensive studies have been conducted to discover an effective therapy for the virus, some of these studies have demonstrated that host miRNAs have antiviral properties and may enhance the treatment of individuals with COVID-19. Host miRNAs are important regulators of virus replication and translation by binding directly to viral RNA. Investigating the interaction between miRNA and SARS-CoV2 can reveal novel therapeutic approaches against this virus. The study analyzed the genomes of seven Libyan SARS-CoV2 isolates and the Wuhan reference strain and used bioinformatics prediction to identify human mature miRNAs that interact with the virus. The study found that 142 lung miRNAs could interact with the viral RNA, and identified several miRNAs with multiple binding sites, including hsa-mir-197-5p and hsa-mir-286-3p. The study also identified miR-138-5p and miR-574-5p as potential therapeutic targets, as they have the ability to bind to the 3'UTR of IFN and ACE2 genes in the host cell. However, the interactions between miRNA and mRNA identified in this study require further experimental validation to confirm their therapeutic potential.

References

Agarwal, V., Bell, G. W., Nam, J., & Bartel, D. P. (2015). Predicting effective microRNA target sites in mammalian mRNAs.

Arbuckle, J. H., Gardina, P. J., Gordon, D. N., Hickman, H. D., Yewdell, J. W., Pierson, T. C., Myers, T. G., & Kristie, T. M. (2017). Inhibitors of the histone methyltransferases EZH2/1 induce a potent antiviral state and suppress infection by diverse viral pathogens. MBio, 8(4), 1–14.

Chauhan, N., Jaggi, M., Chauhan, S. C., Yallapu, M. M., Valley, G., & Valley, R. G. (2022). Fighting the invisible enemy with microRNAs. Expert Review of Anti-Infective Therapy. HHS Public Access. 19(2), 137–145.

Di, D., & Molecolare, M. (2020). MECHANISMS OF MIR-3189-3P-MEDIATED ANTITUMORAL ACTIVITY IN BREAST CANCER.

S.-R. D., & Alam, T. (2021). miRCOVID-19 : Potential Targets of Human miRNAs in.

Girardi, E., López, P., & Pfeffer, S. (2018). On the importance of host MicroRNAs during viral infection. Frontiers in Genetics, 9(OCT), 1–17.

Hardin, L. T., & Xiao, N. (2022). MiRNAs: The Key Regulator of COVID-19 Disease. International Journal of Cell Biology, 2022(i).

D., Arisan, E. D., Dart, A., Grant, G. H., Arisan, S., Cuhadaroglu, S., Lange, S., & Uysal-onganer, P. (2020). The Prediction of miRNAs in SARS-CoV-2 Genomes : Host Responses and Virus Pathogenicity-Related KEGG Pathways Significant for Comorbidities.

Jain, N., Roy, J., Das, B., & Mallick, B. (2019). miR-197-5p inhibits sarcomagenesis and induces cellular senescence via repression of KIAA0101. Molecular Carcinogenesis, 58(8), 1376–1388.

JC Lovejoy, CM Champagne, L de Jonge, H. X. and S. S. (2008). A Neuron-Specific Host MicroRNA Targets Herpes Simplex Virus-1 ICP0 Expression and Promotes Latency. International Journal of Obesity, 32(6), 446–456.

Ke, X., Zeng, X., Wei, X., Shen, Y., Gan, J., Tang, H., & Hu, Z. (2017). MiR-514a-3p inhibits cell proliferation and epithelial-mesenchymal transition by targeting EGFR in clear cell renal cell carcinoma. American Journal of Translational Research, 9(12), 5332–5346.

Li, C., Wang, R., Wu, A., Yuan, T., Song, K., Bai, Y., & Liu, X. (2022). SARS-COV-2 as potential microRNA sponge in COVID-19 patients. BMC Medical Genomics, 15, 1–9.

Mosca, N., Castiello, F., Coppola, N., Trotta, M. C., Sagnelli, C., Pisaturo, M., Sagnelli, E., Russo, A., & Potenza, N. (2014). Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochemical and Biophysical Research Communications, 449(1), 141–145.

Nieto-d, M., Soto, A., Muñoz-galdeano, T., & Reigada, D. (2021). In Silico and In Vitro Analyses Validate Human MicroRNAs Targeting the SARS-CoV-2 3 -UTR.

Orsten, S., Baysal, Yabanoglu-Ciftci, S., Ciftci, T., Azizova, A., Akinci, D., Akyon, Y., & Akhan, O. (2021). MicroRNA expression profile in patients with cystic echinococcosis and identification of possible cellular pathways. Journal of Helminthology, 95.

Reyes-p, P. R., Paul, S., Alberto, L., Bravo, V., Estrada-meza, C., Arturo, R., Alburquerque, A., Pathak, S., Banerjee, A., Bandyopadhyay, A., Chakraborty, S., & Srivastava, A. (2020). Since January 2020 Elsevier

Shimakami, T., Yamane, D., Jangra, R. K., Kempf, B. J., Spaniel, C., Barton, D. J., & Lemon, S. M. (2012). Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proceedings of the National Academy of Sciences of the United States of America, 109(3), 941–946.

Siniscalchi, C., Di Palo, A., Russo, A., & Potenza, N. (2021). Human MicroRNAs Interacting With SARS-CoV-2 RNA Sequences: Computational Analysis and Experimental Target Validation. Frontiers in Genetics, 12(June), 1–8.

Wong, N. A., & Saier, M. H. (2021). The sars-coronavirus infection cycle: A survey of viral membrane proteins, their functional interactions and pathogenesis. In International Journal of Molecular Sciences (Vol. 22, Issue 3).

Xu, K., Shi, J., Mo, D., Yang, Y., Fu, Q., & Luo, Y. (2020). miR-219a-1 inhibits colon cancer cells proliferation and invasion by targeting MEMO1. Cancer Biology and Therapy, 21(12), 1163–1170.

Yadav, R., Chaudhary, J. K., Jain, N., & Chaudhary, P. K. (2021). Role of Structural and Non-Structural Proteins and Therapeutic Targets of SARS-CoV-2 for COVID-19. Cells, 10(4), 821.

Yang, C. Y., Chen, Y. H., Liu, P. J., Hu, W. C., Lu, K. C., & Tsai, K. W. (2022). The emerging role of miRNAs in the pathogenesis of COVID-19: Protective effects of nutraceutical polyphenolic compounds against SARS-CoV-2 infection. International Journal of Medical Sciences, 19(8), 1340–1356.

Yao, Q., Chen, Y., & Zhou, X. (2019). The roles of microRNAs in epigenetic regulation. Current Opinion in Chemical Biology, 51, 11–17.

Young, M., Crook, H., Scott, J., & Edison, P. (2022). Covid-19: virology, variants, and vaccines. BMJ Medicine, 1(1).

Zealy, R. W., Wrenn, S. P., Davila, S., Min, K. W., & Yoon, J. H. (2017). microRNA-binding proteins: specificity and function. Wiley Interdisciplinary Reviews: RNA, 8(5), 1–8.

Zhang, Q., Miao, S., Han, X., Li, C., Zhang, M., Cui, K., Xiong, T., Chen, Z., Wang, C., & Xu, H. (2018). MicroRNA-3619-5p suppresses bladder carcinoma progression by directly targeting β-catenin and CDK2 and activating p21. Cell Death and Disease, 9(10).

Downloads

Published

2023-10-26

How to Cite

Alwash, M., Alilish, A. S., Aboulkasem, S., Aldeeb, M. M., & Aborwis, M. M. (2023). Prediction and Analysis of Targeting Libyan Severe Acute Respiratory Syndrome Corona Virus 2 isolates by Micro-RNA. Scientific Journal for Faculty of Science-Sirte University, 3(2), 44–50. https://doi.org/10.37375/sjfssu.v3i2.1595