Assessment of the antimicrobial activity of three Silene species (Caryophyllaceae) against some microorganisms
DOI:
https://doi.org/10.37375/sjfssu.v3i1.1089Keywords:
Silene species, , Antimicrobial activity,, well diffusion assay,, MIC, , MBC/MFCAbstract
Three Silene species (Silene gallical L., Silene succulent Forsk., and Silene apetala Willd) were tested for potential anti-microbial activity against some microorganisms (Staphylococcus aureus, Serratia marcescens, Acinetobacter boumannii, Klebsella sp., Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, and Alternaria alternata using the well diffusion assay. Solvents used in the extraction process are ethanol, methanol and acetone. The obtained results from all plant extracts showed clear antimicrobial activity against all tested microbial species, except S. succulent extracts, which had no inhibitory activity against Klebsiella sp., A. niger and A. flavus. Moreover, the acetone extract of S. gallical and S. apetala was the most effective plant extract and showed bacteriostatic, bactericidal, fungistatic and fungicidal activities against the highly susceptible species of microbes (S. aureus, S. marcescens, C. cladosporioides, and A. alternata) with MIC ranged from 3.12 to 6.25 mg/ml, MBC and MFC of 6.25 and 12.5 mg/ml. The experiments confirmed the efficacy of selected plant extracts as natural antimicrobials and suggested that they could be used in drugs to treat infectious diseases caused by the tested microbes.
References
Akgul, A. (1989). Antimicrobial activity of black cumin (Nigella sativa L.) essential oil. Gazi Universitesi Eczacilik Fakultesi Dergisi, 6(1), 63-68.
Ali, Z., Ahmad, V. U., Ali, M. S., Iqbal, F., Zahid, M., & Alam, N. (1999). Two new C-glycosylflavones from Silene conoidea. Natural Product Letters, 13(2), 121-129. https://doi.org/10.1080/10575639908048832
Amaral, S., Mira, L., Nogueira, J. M. F., da Silva, A. P., & Florêncio, M. H. (2009). Plant extracts with anti-inflammatory properties—A new approach for characterization of their bioactive compounds and establishment of structure–antioxidant activity relationships. Bioorganic & medicinal chemistry, 17(5), 1876-1883. https://doi.org/10.1016/j.bmc.2009.01.045
Athanassiadis, B., Abbott, P. V., George, N., & Walsh, L. J. (2009). An in vitro study of the antimicrobial activity of some endodontic medicaments and their bases using an agar well diffusion assay. Australian Dental Journal, 54(2), 141-146. https://doi.org/10.1111/j.1834- 7819.2009.01107.x
Burt, S. (2004). Essential oils: their antibacterial properties and potential application in foods: A review. International Journal of Food Microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022
Chandra, M. (2013). Antimicrobial activity of medicinal plants against human pathogenic bacteria. International journal of biotechnology and bioengineering research, 4(7), 653-658. http://www.ripublication.com/ijbbr.htm
Cordell, G. A. (2000). Biodiversity and drug discovery—a symbiotic relationship. Phytochemistry, 55(6), 463-480. https://doi.org/10.1016/S0031-9422(00)00230-2
El Astal, Z. Y., Ashour, A. E. R. A., & Kerrit, A. A. M. (2005). Antimicrobial activity of some medicinal plant extracts in Palestine. Pakistan Journal of Medical Sciences, 21(2), 187-193.
Ertürk, Ö., Kati, H., Yayli, N., & Demirbağ, Z. (2006). Antimicrobial properties of Silene multifida (Adams) Rohrb. plant extracts. Turkish Journal of Biology, 30(1), 17-21. https://journals.tubitak.gov.tr/biology
Gill, A. O., & Holley, R. A. (2006). Disruption of Escherichia coli, Listeria monocytogenes and Lactobacillus sakei cellular membranes by plant oil aromatics. International Journal of Food Microbiology, 108, 1–9. https://doi.org/10.1016/j.ijfoodmicro.2005.10.009
Greuter, W. (1995). Silene (Caryophyllaceae) in Greece: a subgeneric and sectional classification. Taxon, 44(4), 543-581. https://doi.org/10.2307/1223499
Greuter, W. (1995). Studies in Greek Caryophylloideae: Agrostemma, Silene, and Vaccaria. Willdenowia, 105-142. https://www.jstor.org/stable/3996977
Gould D, Booker C. Applied microbiology for nurses. Aardvark Editorial, Mcndham, Suffolk; 2000:75-94
Hawkey, P. M. (1998). The origins and molecular basis of antibiotic resistance. British Medical Journal, 317(7159), 657-660. https://doi.org/10.1136/bmj.317.7159.657
Hirst, M. (2005). Dreams and medicines: The perspective of Xhosa diviners and novices in the Eastern Cape, South Africa. Indo-Pacific Journal of Phenomenology, 5(2), 1-22. https://hdl.handle.net/10520/EJC46926
Keskin, D., Guvensen, N. C., & Yildiz, K. (2016). Antimicrobial activity of Silene cariensis subsp cariensis and Silene pungens from Turkey. Advances in Environmental Biology, 10(7), 167-173. http://www.aensi.org/aeb.html
Lin, S. Y., Wang, C. C., Lu, Y. L., Wu, W. C., & Hou, W. C. (2008). Antioxidant, anti-semicarbazide-sensitive amine oxidase, and anti-hypertensive activities of geraniin isolated from Phyllanthus urinaria. Food and Chemical Toxicology, 46(7), 2485-2492. https://doi.org/10.1016/j.fct.2008.04.007
Mamadalieva, N. Z. (2012). Phytoecdysteroids from Silene plants: distribution, diversity and biological (antitumour, antibacterial and antioxidant) activities. Boletín Latinoamericano y del Caribe de Plantas Medicinales y Aromáticas, 11(6), 474-497. https://www.redalyc.org/articulo.oa?id=85624607001
Miloud, M.M., & Senussi, N.A. (2021). Antibacterial activity of leaf extracts of Silene succulent Forsk. (Caryophyllaceae) against clinically important bacteria. Academia Journal of Microbiology Research, 9(1): 013-020. http://www.academiapublishing.org/ajmr
Moellering Jr, R. C., Graybill, J. R., McGowan Jr, J. E., & Corey, L. (2007). Antimicrobial resistance prevention initiative—an update: proceedings of an expert panel on resistance. American journal of infection control, 35(9), S1-S23. https://doi.org/10.1016/j.ajic.2007.08.001
Mohammadi, S., Asgary, V., Shandiz, S. A. S., Heidari, E., Jozaghkar, H., Cohan, R. A., & Mirzaie, A. (2015). Antimicrobial activity of methanolic root extracts of Euphorbia condylocarpa against pathogenic bacteria. Advanced Studies in Biology, 7(2), 55-64. https://doi.org/10.12988/asb.2015.41049
Mostafa, A. A., Al-Askar, A. A., Almaary, K. S., Dawoud, T. M., Sholkamy, E. N., & Bakri, M. M. (2018). Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi Journal of Biological Sciences, 25(2), 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004
Pawaskar, S. M., & Kale, K. U. (2006). Antibacterial activity of successive extracts of Mimosa pudica. INDIAN DRUGS-BOMBAY-, 43(6), 476.
Sindhu, S., & Manorama, S. (2012). Screening of Polycarpaea corymbosa lam.(Caryophylaceae) for its in vitro antioxidant activity. Asian Journal of Pharmaceutical and Clinical Research, 5(4), 175-8.
Surapuram, V., Setzer, W. N., McFeeters, R. L., & McFeeters, H. (2014). Antifungal activity of plant extracts against Aspergillus niger and Rhizopus stolonifer. Natural Product Communications, 9(11), 1603 – 1605. https://doi.org/10.1177/1934578X1400901118
Teh, C. H., Nazni, W. A., Nurulhusna, A. B., Norazah, A., & Lee, H. L. (2017). Determination of antibacterial activity and minimum inhibitory concentration of larval extract of flyvia resazurin-based turbidometric assay. BMC Microbiology, 17(36), 1-8. https://doi.org/10.1186/s12866-017-0936-3
Toroglu, S., Keskin, D., Dadandi, M. Y., & Yildiz, K. (2013). Comparision of antimicrobial activity of Silene laxa Boiss. & Kotschy and Silene caramanica Boiss. & Heldr different extracts from Turkey. JOURNAL OF PURE AND APPLIED MICROBIOLOGY, 7, 1763-1768.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Scientific Journal for Faculty of Science-Sirte University
This work is licensed under a Creative Commons Attribution 4.0 International License.