The effects of indole butyric acid and seaweed (Posidonia oceanic) and their mixture in improving photosynthetic pigments of salt-stressed wheat cultivar (Marjawi).


  • sami salih Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Al-Bayda, Libya
  • Ahmed Amrajaa Abdulrraziq Department of Biology, Faculty of Education, Omar Al-Mukhtar University, Al-Bayda, Libya.



Posidonia oceanic , Indole-3-butyric acid, , Photosynthetic pigment, , Wheat (Marjawi).


Salt stress is one of the most limiting factors in the production of agricultural crops.  This study was conducted to test the effect of different salinity levels at concentrations (0.0, 100, 200, and 300 mM) of sodium chloride on the photosynthetic pigments content of Triticum aestivum (Marjawi cultivar), and attempting to treat using several transactions of different treatments, include: spraying at 100 mg/L of Indole3- Butyric Acid (seedlings 2 weeks old), adding crude powder of seaweed Posidonia oceanica 25 g/pot (before agriculture),  and (mixture) of a crude powder of P.oceanic 25 g/pot + spraying IBA, with three replications according to a completely randomized design. The results showed a significant decrease in the content of chlorophyll (a, b), carotenoids, and Total pigments with increasing NaCl concentrations, compared to a control. Moreover, spraying with (IBA) decrease significantly the negative effect of salinity. Also result indicated that adding crude powder of P.oceanica was not successful in reducing salt stress, in addition, the result showed that the mixture was superior in recording the best rates in improving the photosynthetic pigments content of wheat salt-stressed,  This study concluded that harmful effects of salinity can be mitigated using the mixed treatment.


Abbas, G., Rehman, S., Siddiqui, M. H., Ali, H. M., Farooq, M. A., & Chen, Y. (2022). Potassium and humic acid synergistically increase salt tolerance and nutrient uptake in contrasting wheat genotypes through ionic homeostasis and activation of antioxidant enzymes. Plants, 11(3), 263.‏

Ahanger, M. A., Qin, C., Begum, N., Maodong, Q., Dong, X. X., El-Esawi, M., ... & Zhang, L. (2019). Nitrogen availability prevents oxidative effects of salinity on wheat growth and photosynthesis by up-regulating the antioxidants and osmolytes metabolism, and secondary metabolite accumulation. BMC Plant Biology, 19(1), 1-12.‏

Aroca, R., Ruiz-Lozano, J. M., Zamarre, A. M., Paz, J. A., García-Minak, J. M., Pozo, M. J. and Lopez-Raez, J. A. (2013). Arbuscular mycorrhizal symbiosis influences strigolactone production under salinity and alleviates salt stress in lettuce plants. J. Plant Physiol. 170:47- 55.

Bay, D. (1984). A field study of the growth dynamics and productivity of Posidonia oceanica (L.) Delile in Calvi Bay, Corsica. Aquatic Botany, 20(1-2), 43-64.‏

Castaldi, P., & Melis, P. (2002). Composting of Posidonia oceanica and its use in agriculture. In Microbiology of composting (pp. 425-434). Springer, Berlin, Heidelberg.‏

Dadrwal, B. K., Bagdi, D. L., Kakralya, B. L., & Sharma, M. K. (2022). Foliar treatment with ascobin reduces the adverse effects of salt stress on physiological and biochemical parameters in wheat. The Pharma Innovation Journal, 11(5): 2117-2120.

Dafaallah, A. B., Mustafa, W. N., and Hussein, Y. H., (2019). Allelopathic Effects of Jimsonweed (Datura Stramonium L.) Seed on Seed Germination and Seedling Growth of Some Leguminous Crops. International Journal of Innovative Approaches in Agricultural Research, Vol. 3 (2): 321-331.

Dural, M. U., Cavas, L., Papageorgiou, S. K., & Katsaros, F. K. (2011). Methylene blue adsorption on activated carbon prepared from Posidonia oceanica (L.) dead leaves: Kinetics and equilibrium studies. Chemical Engineering Journal, 168(1), 77-85.‏

Ezziany, I. M. Haddoud, D. and Barah, M. (2015). Estimating Distribution of two Libyan Seagrass Species, Posidonia oceanica and Cymodoceanodosa, that face a Future Decline in Khoms to Misurata in Libyan Shores. International Journal of Agriculture and Economic Development, 3(1), 15.‏

Hamouda, M. M., Saad-Allah, K. M., & Gad, D. (2022). Potential of Seaweed Extract on Growth, Physiological, Cytological and Biochemical Parameters of Wheat (Triticum aestivum L.) Seedlings. Journal of Soil Science and Plant Nutrition, 1-14.

Humphries, E. (1956). Mineral components and ash analysis. In Moderne Methoden der Pflanzenanalyse/Modern Methods of Plant Analysis Springer, (pp. 468-502).

Iqbal, M. S., Zahoor, M., Akbar, M., Ahmad, K., Hussain, S., Munir, S., ... & Islam, M. (2022). Alleviating the deleterious effects of salt stress on wheat (Triticum aestivum L.) by foliar application of gibberellic acid and salicylic acid. Appl. Ecol. Environ. Res, 20, 119-134.‏

Kalaivanan C, Venkatesalu V.(2012) Utilization of seaweed Sargassum myriocystum extracts as a stimulant of seedlings of Vigna mungo (L.) Hepper. Span J Agricul Res. 10(2):466-70.

Kapadia, C., Patel, N., Rana, A., Vaidya, H., Alfarraj, S., Ansari, M. J., Gafur, A., Poczai, P., and Sayyed, R. Z. (2022). Evaluation of plant growth-promoting and salinity ameliorating potential of halophilic bacteria isolated from saline soil. Frontiers in Plant Science,13:946217.

Kayai, C., Tuna, A. L., And Okant, A. M. (2010). Effect of foliar applied kinetin And indole acetic acid on maize ,Turk J Agric Tubitak, 529-538.

Kesh, H., Devi, S., Kumar, N., Kumar, A., Kumar, A., Dhansu, P., Sheoran.,P., and Mann, A. (2022). Insights into physiological, biochemical and molecular responses in wheat under salt stress.

Khan, Z., Gul, H., Rauf, M., Arif, M., Hamayun, M., Ud-Din, A.,Sajid, Z.A., Khilji, S. A., Rehman, A., Tabassum, A., Parveen.Z.,and Lee, I. J. (2022). Sargassum wightii aqueous extract improved salt stress tolerance in Abelmoschus esculentus by mediating metabolic and ionic rebalance. Frontiers in Marine Science, 9.pp1-19.

Lata, C., Kumar, A., Mann, A., Soni, S., Meena, B., & Rani, S. (2022). Mineral nutrient analysis of three halophytic grasses under sodic and saline stress conditions. Indian Journal Of Agricultural Sciences, 92(9), 1051-1055.

Ma, Y., Dias, M. C., and Helena Freitas, H. (2020). Drought and salinity stress responses and microbe-induced tolerance in plants. Front. Plant Sci. 11: 591911.

Metzner, H., Rau, H., & Senger, H. (1965). Untersuchungen zur synchronisierbarkeit einzelner pigmentmangel-mutanten von Chlorella. Planta, 65(2), 186-194.

Metzner, H., Rau, H., and Senger, H., (1965). Studies on synchronization of some pigment-deficient Chlorella mutants. Planta, 65, 186-194.

Nabti, E., Jha, B., & Hartmann, A. (2017). Impact of seaweeds on agricultural crop production as biofertilizer. International Journal of Environmental Science and Technology, 14(5), 1119-1134.‏

Pandey, J., Devadasu, E., Saini, D., Dhokne, K., Marriboina, S., Agepati, R. S., & Subramanyam, R. (2022). Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. The Plant Journal.‏ 113(1), 60-74.

Piotrowska-Niczyporuk, A., Bajguz, A., Zambrzycka-Szelewa, E., & Bralska, M. (2018). Exogenously applied auxins and cytokinins ameliorate lead toxicity by inducing antioxidant defence system in green alga Acutodesmus obliquus. Plant Physiology and Biochemistry, 132, 535-546.

Rachappanavar, V., Padiyal, A., Sharma, J. K., & Gupta, S. K. (2022). Plant hormone-mediated stress regulation responses in fruit crops-a review. Scientia Horticulturae, 304, 111302.‏

Salih, S. M., and Abdulrraziq, A. A., (2021). Auto-Resistance to Seeds Germination of Invasive Acacia saligna Trees at AlJabal Al-Akhdar region. Scientific Journal for the Faculty of Science-Sirte University , Vol 1, Issue (2): 20-24.

Santos, C. V. (2004). Regulation of chlorophyll biosynthesis and degradation by salt stress in sunflower leaves. Scientia horticulturae, 103(1), 93-99.‏

Sharma, S., Bhatt, U., Sharma, J., Kalaji, H. M., Mojski, J., & Soni, V. (2022). Ultrastructure, adaptability, and alleviation mechanisms of photosynthetic apparatus in plants under waterlogging: A review. Photosynthetica, 60(3), 430-444.

Singh, P., Kumari, A., and Gupta, K. J. (2022). Alternative oxidase plays a role in minimizing ROS and RNS produced under salinity stress in Arabidopsis thaliana. Physiologia Plantarum, 174(2), e13649.

Wang, C. F., Han, G. L., Yang, Z. R., Li, Y. X., and Wang, B. S. (2022). Plant salinity sensors: current understanding and future directions. Frontiers in plant science, 13: 859224.

Yilmaz, M., Kizilgeçi, F., Tazebay, N., Ufuk, A. S. A. N., Iqbal, A., & Iqbal, M. A.(2022). Determination of the effect of salicylic acid application on salinity stress at germination stage of bread wheat. Yuzuncu Yıl University Journal Of Agricultural Sciences, 32(2), 223-236.




How to Cite

salih, sami, & Amrajaa Abdulrraziq, A. (2023). The effects of indole butyric acid and seaweed (Posidonia oceanic) and their mixture in improving photosynthetic pigments of salt-stressed wheat cultivar (Marjawi). Scientific Journal for Faculty of Science-Sirte University, 3(1), 139–144.