pH Role in Green Synthesis of Silver Nanoparticles Using Extract of various Plant Parts: A review
DOI:
https://doi.org/10.37375/sjfssu.v4i2.2898Keywords:
Biosynthesis, silver nanoparticles, plant extract, pH, size, morphology.Abstract
Synthesizing silver nanoparticles (AgNPs) from extracts of various plant parts and of agricultural waste is strongly affected by pH. These green synthesis methods cconsidered simple, cost effective, ecofriendly, and biologically effective. This brief review aimed to survey the role of pH in the green synthesis of AgNPs using those media, with a focus on its effect on AgNPs morphology and size. This review article revealed that the alkaline pH (9 - 10) is the optimum condition for synthesizing more stable and tiny uniform AgNPs. In addition, according to the reviewed articles, the spherical shape is the most dominant shape of these articles in the basic medium and the size of these particles decreases at elevated pH values and ranged from 5-40 nm.
References
Abdelmonem, A. M., & Amin, R. M. (2014). Rapid green synthesis of metal nanoparticles using pomegranate polyphenols. International Journal of Sciences: Basic and Applied Research (IJSBAR), 15(1), 57-65.
Ahani, M., & Khatibzadeh, M. (2022). Green synthesis of silver nanoparticles using gallic acid as reducing and capping agent: effect of pH and gallic acid concentration on average particle size and stability. Inorganic and Nano-Metal Chemistry, 52(2), 234-240.
Alsammarraie, F. K., Wang, W., Zhou, P., Mustapha, A., & Lin, M. (2018). Green synthesis of silver nanoparticles using turmeric extracts and investigation of their antibacterial activities. Colloids and Surfaces B: Biointerfaces, 171, 398-405.
Andreescu, D., Eastman, C., Balantrapu, K., & Goia, D. V. (2007). A simple route for manufacturing highly dispersed silver nanoparticles. Journal of materials research, 22(9), 2488-2496.
Anigol, L. B., Charantimath, J. S., & Gurubasavaraj, P. M. (2017). Effect of concentration and pH on the size of silver nanoparticles synthesized by green chemistry. Org. Med. Chem. Int. J, 3(5), 1-5.
Ansari, M., Ahmed, S., Abbasi, A., Khan, M. T., Subhan, M., Bukhari, N. A., ... & Abdelsalam, N. R. (2023). Plant mediated fabrication of silver nanoparticles, process optimization, and impact on tomato plant. Scientific Reports, 13(1), 18048.
Castro, L., Blázquez, M. L., González, F., Muñoz, J. A., & Ballester, A. (2013). Gold, silver and platinum nanoparticles biosynthesized using orange peel extract. Advanced materials research, 825, 556-559.
Chowdhury, I. H., Ghosh, S., Roy, M., & Naskar, M. K. (2015). Green synthesis of water-dispersible silver nanoparticles at room temperature using green carambola (star fruit) extract. Journal of Sol-Gel Science and Technology, 73, 199-207.
Christopher, J. G., Saswati, B., & Ezilrani, P. (2015). Optimization of parameters for biosynthesis of silver nanoparticles using leaf extract of Aegle marmelos. Brazilian Archives of Biology and Technology, 58(5), 702-710.
Corciova, A., Ivanescu, B., Tuchilus, C., Fifere, A., Doroftei, F., Lungoci, A. L., ... & Mircea, C. (2018). Biosynthesis of silver nanoparticles (AgNPs) using Tilia cordata flowers extracts and evaluation of some biological activities. Environmental Engineering & Management Journal (EEMJ), 17(12).
Devi, G. K., Suruthi, P., Veerakumar, R., Vinoth, S., Subbaiya, R., & Chozhavendhan, S. (2019). A review on metallic gold and silver nanoparticles. Research Journal of Pharmacy and Technology, 12(2), 935-943.
Dhand, V., Soumya, L., Bharadwaj, S., Chakra, S., Bhatt, D., & Sreedhar, B. J. M. S. (2016). Green synthesis of silver nanoparticles using Coffea arabica seed extract and its antibacterial activity. Materials Science and Engineering: C, 58, 36-43.
Donga, S., & Chanda, S. (2021). Facile green synthesis of silver nanoparticles using Mangifera indica seed aqueous extract and its antimicrobial, antioxidant and cytotoxic potential (3-in-1 system). Artificial Cells, Nanomedicine, and Biotechnology, 49(1), 292-302.
Fernando, I., & Zhou, Y. (2019). Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere, 216, 297-305.
Handayani, W., Ningrum, A. S., & Imawan, C. (2020). The role of pH in synthesis silver nanoparticles using pometia pinnata (matoa) leaves extract as bioreductor. In Journal of Physics: Conference Series (Vol. 1428, No. 1, p. 012021). IOP Publishing.
Hembram, K. C., Kumar, R., Kandha, L., Parhi, P. K., Kundu, C. N., & Bindhani, B. K. (2018). Therapeutic prospective of plant-induced silver nanoparticles: application as antimicrobial and anticancer agent. Artificial cells, nanomedicine, and biotechnology, 46(sup3), 38-51.
Heydari, R., & Rashidipour, M. (2015). Green synthesis of silver nanoparticles using extract of oak fruit hull (Jaft): synthesis and in vitro cytotoxic effect on MCF‐7 cells. International journal of breast cancer, 2015(1), 846743.
Ider, M., Abderrafi, K., Eddahbi, A., Ouaskit, S., & Kassiba, A. (2017). Silver metallic nanoparticles with surface plasmon resonance: synthesis and characterizations. Journal of Cluster Science, 28, 1051-1069.
Jamil, Y. M., Al-Hakimi, A. N., Al-Maydama, H. M., Almahwiti, G. Y., Qasem, A., & Saleh, S. M. (2024). Optimum Green Synthesis, Characterization, and Antibacterial Activity of Silver Nanoparticles Prepared from an Extract of Aloe fleurentinorum. International Journal of Chemical Engineering, 2024(1), 2804165.
Kahraman, H. T. (2024). Synthesis of silver nanoparticles using Alchemilla vulgaris and Helichrysum arenarium for methylene blue and 4-nitrophenol degradation and antibacterial applications. Biomass Conv. Bioref. 14, 13479–13490.
Kaur, R., Avti, P., Kumar, V., & Kumar, R. (2021). Effect of various synthesis parameters on the stability of size controlled green synthesis of silver nanoparticles. Nano Express, 2(2), 020005.
Komes, D., Belščak‐Cvitanović, A., Horžić, D., Rusak, G., Likić, S., & Berendika, M. (2011). Phenolic composition and antioxidant properties of some traditionally used medicinal plants affected by the extraction time and hydrolysis. Phytochemical analysis, 22(2), 172-180.
Kredy, H. M. (2018). The effect of pH, temperature on the green synthesis and biochemical activities of silver nanoparticles from Lawsonia inermis extract. Journal of Pharmaceutical Sciences and Research, 10(8), 2022-2026.
Liaqat, N., Jahan, N., Anwar, T., & Qureshi, H. (2022). Green synthesized silver nanoparticles: Optimization, characterization, antimicrobial activity, and cytotoxicity study by hemolysis assay. Frontiers in chemistry, 10, 952006.
Li, S., Shen, Y., Xie, A., Yu, X., Qiu, L., Zhang, L., & Zhang, Q. (2007). Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chemistry, 9(8), 852-858.
Marković, K., Kesić, A., Novaković, M., Grujović, M., Simijonović, D., Avdović, E. H., ... & Marković, Z. (2024). Biosynthesis and characterization of silver nanoparticles synthesized using extracts of Agrimonia eupatoria L. and in vitro and in vivo studies of potential medicinal applications. RSC advances, 14(7), 4591-4606.
Marslin, G., Siram, K., Maqbool, Q., Selvakesavan, R. K., Kruszka, D., Kachlicki, P., & Franklin, G. (2018). Secondary metabolites in the green synthesis of metallic nanoparticles. Materials, 11(6), 940.
Mostafavi, E., Zarepour, A., Barabadi, H., Zarrabi, A., Truong, L. B., & Medina-Cruz, D. (2022). Antineoplastic activity of biogenic silver and gold nanoparticles to combat leukemia: beginning a new era in cancer theragnostic. Biotechnology Reports, 34, e00714.
Mosaviniya, M., Kikhavani, T., Tanzifi, M., Yaraki, M. T., Tajbakhsh, P., & Lajevardi, A. (2019). Facile green synthesis of silver nanoparticles using Crocus Haussknechtii Bois bulb extract: Catalytic activity and antibacterial properties. Colloid and Interface Science Communications, 33, 100211.
Mukherji, S., Bharti, S., Shukla, G., & Mukherji, S. (2019). Synthesis and characterization of size-and shape-controlled silver nanoparticles. Physical Sciences Reviews, 4(1), 20170082.
Nadzirah, A. S., Salina, M., & Latif, I. A. (2023, June). The effect of pH, temperature on green synthesis and antibacterial activity of silver nanoparticles from Polygonum minus extract. In AIP Conference Proceedings, 2625(1). AIP Publishing.
Nahar, K., Aziz, S., Bashar, M., Haque, M. A., & Al-Reza, S. M. (2020). Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. International Journal of Nano Dimension, 11(1), 88-98.
Nasir, A., Masih, R., Massey, S., Arshad, L., Rehman, S. U., Waqar, I., & Khalid, A. (2023). Isoconversional Thermal Analysis of Cydonia oblonga Mucilage Composite Wound Dressing. Pakistan Journal of Agricultural Research, 36(4).
Nurfadhilah, M., Nolia, I., Handayani, W., & Imawan, C. (2018, May). The role of pH in controlling size and distribution of silver nanoparticles using biosynthesis from Diospyros discolor Willd.(Ebenaceae). In IOP Conference Series: Materials Science and Engineering, 367(1), p. 012033). IOP Publishing.
Omar, A. A., Ahmad, N. A., Rajab, M. M., Berrisha, N. E., Alnakkaa, A. A., Alshareef, B. A., & Qadmour, R. R. (2021). Biosynthesis of Silver nanoparticles using Olive Wastewater. Journal of Materials NanoScience, 8(1), 11-15.
Omar, A. A., Alkelbash, H. M., Alhasomi, Y. F., Al-muntaser, O. M., Elraies, S. S. E., & Khalifa, A. A. (2018). Green synthesis of silver nanoparticles using olive pomace extract. Journal of science, 662-9.
Rajeshkumar, S., & Bharath, L. V. (2017). Mechanism of plant-mediated synthesis of silver nanoparticles–a review on biomolecules involved, characterisation and antibacterial activity. Chemico-biological interactions, 273, 219-227.
Restrepo, C. V., & Villa, C. C. (2021). Synthesis of silver nanoparticles, influence of capping agents, and dependence on size and shape: A review. Environmental Nanotechnology, Monitoring & Management, 15, 100428.
Riaz, M., Mutreja, V., Sareen, S., Ahmad, B., Faheem, M., Zahid, N., ... & Park, J. (2021). Exceptional antibacterial and cytotoxic potency of monodisperse greener AgNPs prepared under optimized pH and temperature. Scientific Reports, 11(1), 2866.
Rousta, M. H., & Ghasemi, N. (2019). Green synthesis of silver nanoparticles using a mountain plant extract. Rev. Roum. Chim, 64(2), 143-152.
Saravanan, A., Kumar, P. S., Karishma, S., Vo, D. V. N., Jeevanantham, S., Yaashikaa, P. R., & George, C. S. (2021). A review on biosynthesis of metal nanoparticles and its environmental applications. Chemosphere, 264, 128580.
Sathishkumar, M., Sneha, K., Won, S. W., Cho, C. W., Kim, S., & Yun, Y. S. (2009). Cinnamon zeylanicum bark extract and powder mediated green synthesis of nano-crystalline silver particles and its bactericidal activity. Colloids and Surfaces B: Biointerfaces, 73(2), 332-338.
Seifipour, R., Nozari, M., & Pishkar, L. (2020). Green synthesis of silver nanoparticles using Tragopogon collinus leaf extract and study of their antibacterial effects. Journal of Inorganic and Organometallic Polymers and Materials, 30(8), 2926-2936
Shah, M., Fawcett, D., Sharma, S., Tripathy, S. K., & Poinern, G. E. J. (2015). Green synthesis of metallic nanoparticles via biological entities. Materials, 8(11), 7278-7308.
Shaik, M. R., Khan, M., Kuniyil, M., Al-Warthan, A., Alkhathlan, H. Z., Siddiqui, M. R. H., ... & Adil, S. F. (2018). Plant-extract-assisted green synthesis of silver nanoparticles using Origanum vulgare L. extract and their microbicidal activities. Sustainability, 10(4), 913.
Sivakumar, M., Surendar, S., Jayakumar, M., Seedevi, P., Sivasankar, P., Ravikumar, M., ... & Loganathan, S. (2021). Parthenium hysterophorus mediated synthesis of silver nanoparticles and its evaluation of antibacterial and antineoplastic activity to combat liver cancer cells. Journal of Cluster Science, 32, 167-177.
Sohrabnezhad, S., Rassa, M., & Seifi, A. (2016). Green synthesis of Ag nanoparticles in montmorillonite. Materials Letters, 168, 28-30.
Traiwatcharanon, P., Timsorn, K., & Wongchoosuk, C. (2016). Effect of pH on the green synthesis of silver nanoparticles through reduction with pistiastratiotes l. extract. Advanced materials research, 1131, 223-226.
Velgosová, O., Mražíková, A., & Marcinčáková, R. (2016). Influence of pH on green synthesis of Ag nanoparticles. Materials letters, 180, 336-339.
Verma, A., & Mehata, M. S. (2016). Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. Journal of radiation Research and applied sciences, 9(1), 109-115.
Villanueva-Ibáñez, M., Yañez-Cruz, M. G., Álvarez-García, R., Hernández-Pérez, M. A., & Flores-González, M. A. (2015). Aqueous corn husk extract–mediated green synthesis of AgCl and Ag nanoparticles. Materials Letters, 152, 166-169.
Wei, S., Wang, Y., Tang, Z., Hu, J., Su, R., Lin, J., ... & Xu, R. (2020). A size-controlled green synthesis of silver nanoparticles by using the berry extract of Sea Buckthorn and their biological activities. New Journal of Chemistry, 44(22), 9304-9312.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Scientific Journal for Faculty of Science-Sirte University
This work is licensed under a Creative Commons Attribution 4.0 International License.