A Geomorphological and Environmental Evaluation of Coastal Cliffs Collapse in the Bardai Region, North-eastern Libya
DOI:
https://doi.org/10.37375/susj.v15i2.3724Keywords:
Coastal erosion, cliff collapse, Bardai, Eastern Libya, geomorphology, marine processes, rock weatheringAbstract
Due to its carbonate-dominated lithology and exposure to tectonic and marine forces, the Bardai coastal region in eastern Libya is extremely susceptible to cliff collapse. The Bardai cliffs' instability has increased due to micro-fracturing caused by recent seismic activity in the eastern Mediterranean, including moderate to powerful earthquakes in Greece and Turkey. Active retreat, undercutting, and massive rockfalls that endanger human safety and coastal ecosystems were found during field observations Similarly, the region's geological formations, such as Al-Jaghoub, Al-Faydiya, and Al-Abraq, cause the rocks to fracture and fragment due to the pressure of the Al-Jaghoub formation layers on other delicate formations. By creating shockwaves that travel through pre-fractured strata, illicit fishing methods involving underwater explosives beneath rocky cliffs have accelerated structural weakening in addition to natural forces. In order to reduce future risks in the Bardai area, it is imperative to assess coastal hazards and implement sustainable management strategies in light of the combined natural and human pressures.
References
Adam. A. A. F. 2018. Petrographically and Mineralogical Studies on the Oligocene-Miocene formations of Al Bardia Coastal Area, East Tobruk City, Libya. Unpublished M.Sc. Thesis, Mansoura University, Egypt 109 pp.
Abdulsamad, E.O., Bu-Argoub, F.M. And Tmalla, A.F.A., 2009. A stratigraphic review of the Eocene to Miocene rock units in the Al Jabal Al Akhdar: Upper Eocene planktonic foraminifera from Wadi Bakur, SE Tukrah, NE Libya. Libyan Journal of Science, 6B: 57-79.
Anagnostou, C., Karastathis, V., & Papanikolaou, D. (2025). Seismic swarm activity in the Myrtos Gulf offshore Kefalonia. Pure and Applied Geophysics. https://link.springer.com/journal/24
Anagnostou, V., Papadimitriou, E., Karakostas, V., Bäck, T., et al. (2025). Investigating the 2024 Swarm–Like Activity Offshore Kefalonia Island, Aided by Machine Learning Algorithms. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-025-03766-3
Banerjee, S. – 1980. Cement grade limestones of Libya. Unpub. Rep., Industrial Research Centre.
Bełdowska, M., Bełdowski, J., Kwasigroch, U., Szubska, M., & Jędruch, A. (2022). Coastal cliff erosion as a source of toxic essential and nonessential metals in the marine environment. Oceanologia, 64(4), 553–566. https://doi.org/10.1016/j.oceano.2022.04.001
Brain, M. J., Rosser, N. J., & Norman, E. (2023). Coastal cliff erosion and instability in a changing climate. Earth-Science Reviews, 241, 104402.
Chatzipetros, A., & Pavlides, S. (2025). Seismotectonic evaluation of the 2025 Euboea earthquake swarm. Annals of Geophysics (in press). https://www.annalsofgeophysics.eu
El Deftar, T., & Issawi, B. (1977) 'Geological map of Libya; 1:250,000. Sheet: Al Bardia NH 35-1. Explanatory Booklet', Industrial Research Centre, Tripoli, 93 pp.
El Hawat, A. S., & Shelmani, M. A. (1993) 'Short notes and guide-book on the geology of Al Jabal al Akhdar, Cyrenaica, NE Libya', In Printed Limited Malta, pp. 70.
Emery, K. O., & Kuhn, G. G. (1982). Sea cliffs: Their processes, profiles, and classification. Geological Society of America Bulletin, 93(6), 644–654. https://doi.org/10.1130/0016-7606(1982)93<644:SCTPPA>2.0.CO;2
European-Mediterranean Seismological Centre (EMSC). (2025). Special Report on the Kasos–Crete seismic activity. https://www.emsc-csem.org
Imam, C., Chaibi, M., Ayt Ougougdal, M., El Bchari, F., Charif, A., & Ait Malek, H. (2023). Analysis of coastal retreat and slope movements on rocky coastal cliffs: A distributed natural hazard in the Safi region, Morocco. Proceedings, 87(1), 21. https://doi.org/10.3390/IECG2022-13962
Kandilli Observatory. (2025). Technical Report on the 2025 Rhodes Earthquake Sequence. https://www.koeri.boun.edu.tr
Khameiss. B., Muftah M., Muftah M., Abdelgalil M.,, 2024. Scleractinian Corals From the Benghazi Formation in As Sahabi Area and From Al Jaghbub Formation in Tubroq Area, Libya: Implications for Coral Diversity and Biogeography. The 14th ICEEE-2023 International Annual Conference Abstract and Proceedings Book, pp.313-324.
Korkusuz Öztürk, Y., Konca, A. Ö., & Meral Özel, N. (2025). 3D Dynamic Rupture Simulations for the Potential Main Marmara Fault Earthquake. Journal of Geophysical Research: Solid Earth, 130(7). https://doi.org/10.1029/2024JB029585
Korkusuz Öztürk, Z., Yalcinkaya, E., & Polat, O. (2025). Seismological analysis of the 2025 Sea of Marmara earthquake sequence. Journal of Geophysical Research: Solid Earth (in press). https://agupubs.onlinelibrary.wiley.com/journal/21699356
Lee, E. M. (2008). Coastal cliff behaviour: Observations on the relationship between beach levels and recession rates. Geomorphology, 101(4), 558–571. https://doi.org/10.1016/j.geomorph.2008.02.003
Limber, P. W., Barnard, P. L., & Hapke, C. (2021). Coastal cliff sensitivity to waves, sea-level rise, and anthropogenic forcing. Geomorphology, 390, 107874.
Masoud, M., Abas, M., & Ajweedah, F. (2025). Textural Analysis and Clay Mineralogy of Sabkha Sediments in Wadi El-Sahal and Wadi El-Suwani, Tobruk City, Libya. Scientific Journal for Faculty of Science-Sirte University, 5(2), 9–17. https://doi.org/10.37375/sjfssu.v5i2.3427
Masoud, M., and Khameiss, B. (2024). Mineral Composition of Coastal Landforms in Wadi Al-Suwani at Al-Bardia Region, East of Tobruk City, Libya. Scientific Journal for the Faculty of Science-Sirte University, 4(2), 15–32.
Masoud, M and Khameiss, B. (2025). Investigation of Sedimentary Microfacies and mineralogical analyses of the Coastal Rock Cliffs (Wadi al-Zaytoun) in the Al Jaghbub, Al Faidyah, and Abraq Formations, NE Libya Libya. Scientific Journal for the Faculty of Science-Sirte University. Vol. 5, No. 1 - 24-41.
Masoud. A. M. M., (2020). Sedimentological and Environmental Studies on the Shore Zone of Tobruk City, Libya. Unpublished M.Sc. Thesis, Mansoura University, Egypt, 162.
Mavroulis, S., et al. (2025). Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm. GeoHazards, 6(2), 32. https://doi.org/10.3390/geohazards6020032
Megerisi, M., & Mamgain, V. (1980) 'Al Khowaymat Formation - an enigma in the stratigraphy of northeast Libya', in Salem, M. J. and Busrewil, M. T. (eds.) The Geology of Libya, Volume 1, Academic Press, London, pp. 73-88.
National Observatory of Athens (NOA). (2025). Earthquake Bulletin: Euboea Seismic Swarm. https://www.gein.noa.gr
Özdemir, A., & Cakti, E. (2025). Ground motion characteristics of the 2025 Rhodes region earthquake. Soil Dynamics and Earthquake Engineering (in press). https://www.sciencedirect.com/journal/soil-dynamics-and-earthquake-engineering
Papadopoulos, G. A., Lekkas, E., & Fokaefs, A. (2025). Analysis of the Kasos–Crete twin earthquake sequence. Bulletin of the Geological Society of Greece (preprint). https://ejournals.epublishing.ekt.gr/index.php/geosociety
Pietersz, C.R., 1968. Proposed nomenclature for rock units in Northern Cyrenaica. In: Barr F.T. (Ed.), Geology and Archaeology of Northern Cyrenaica, Libya, Tripoli, pp. 125-130.
Queiroz, S. M. R., & Marques, F. M. S. F. (2019). Sea cliff instability susceptibility considering nearby human occupation and predictive capacity assessment. Engineering Geology, 253, 75–93. https://doi.org/10.1016/j.enggeo.2019.03.009
Trenhaile, A. S. (2002). Rock coasts, with particular emphasis on shore platforms. Geomorphology, 48(1–3), 7–22. https://doi.org/10.1016/S0169-555X(02)00172-3
Triantafyllou, A., Papadimitriou, P., & Karakostas, V. (2025). Seismotectonic characteristics of the Santorini–Amorgos seismic sequence. Geosciences (in press). https://www.mdpi.com/journal/geosciences
Utkucu, M., Durmuş, H., & Altunel, E. (2025). Tectonic implications of the 2025 Balıkesir (Sındırgı) earthquake. Tectonophysics (preprint). https://www.sciencedirect.com/journal/tectonophysics
Westoby, M., Lim, M., Hogg, M., Dunlop, L., Pound, M., Strzelecki, M., & Woodward, J. (2020). Decoding complex erosion responses for the mitigation of coastal rockfall hazards using repeat terrestrial LiDAR. Remote Sensing, 12(16), 2620. https://doi.org/10.3390/rs12162620
Young, A. P., & Ashford, S. A. (2006). Application of airborne LIDAR for seacliff volumetric change and beach-slope change. Journal of Coastal Research, 22(2), 307–318. https://doi.org/10.2112/05-0521.1
Adam. A. A. F. 2018. Petrographically and Mineralogical Studies on the Oligocene-Miocene formations of Al Bardia Coastal Area, East Tobruk City, Libya. Unpublished M.Sc. Thesis, Mansoura University, Egypt 109 pp.
Abdulsamad, E.O., Bu-Argoub, F.M. And Tmalla, A.F.A., 2009. A stratigraphic review of the Eocene to Miocene rock units in the Al Jabal Al Akhdar: Upper Eocene planktonic foraminifera from Wadi Bakur, SE Tukrah, NE Libya. Libyan Journal of Science, 6B: 57-79.
Anagnostou, C., Karastathis, V., & Papanikolaou, D. (2025). Seismic swarm activity in the Myrtos Gulf offshore Kefalonia. Pure and Applied Geophysics. https://link.springer.com/journal/24
Anagnostou, V., Papadimitriou, E., Karakostas, V., Bäck, T., et al. (2025). Investigating the 2024 Swarm–Like Activity Offshore Kefalonia Island, Aided by Machine Learning Algorithms. Pure and Applied Geophysics. https://doi.org/10.1007/s00024-025-03766-3
Banerjee, S. – 1980. Cement grade limestones of Libya. Unpub. Rep., Industrial Research Centre.
Bełdowska, M., Bełdowski, J., Kwasigroch, U., Szubska, M., & Jędruch, A. (2022). Coastal cliff erosion as a source of toxic essential and nonessential metals in the marine environment. Oceanologia, 64(4), 553–566. https://doi.org/10.1016/j.oceano.2022.04.001
Brain, M. J., Rosser, N. J., & Norman, E. (2023). Coastal cliff erosion and instability in a changing climate. Earth-Science Reviews, 241, 104402.
Chatzipetros, A., & Pavlides, S. (2025). Seismotectonic evaluation of the 2025 Euboea earthquake swarm. Annals of Geophysics (in press). https://www.annalsofgeophysics.eu
El Deftar, T., & Issawi, B. (1977) 'Geological map of Libya; 1:250,000. Sheet: Al Bardia NH 35-1. Explanatory Booklet', Industrial Research Centre, Tripoli, 93 pp.
El Hawat, A. S., & Shelmani, M. A. (1993) 'Short notes and guide-book on the geology of Al Jabal al Akhdar, Cyrenaica, NE Libya', In Printed Limited Malta, pp. 70.
Emery, K. O., & Kuhn, G. G. (1982). Sea cliffs: Their processes, profiles, and classification. Geological Society of America Bulletin, 93(6), 644–654. https://doi.org/10.1130/0016-7606(1982)93<644:SCTPPA>2.0.CO;2
European-Mediterranean Seismological Centre (EMSC). (2025). Special Report on the Kasos–Crete seismic activity. https://www.emsc-csem.org
Imam, C., Chaibi, M., Ayt Ougougdal, M., El Bchari, F., Charif, A., & Ait Malek, H. (2023). Analysis of coastal retreat and slope movements on rocky coastal cliffs: A distributed natural hazard in the Safi region, Morocco. Proceedings, 87(1), 21. https://doi.org/10.3390/IECG2022-13962
Kandilli Observatory. (2025). Technical Report on the 2025 Rhodes Earthquake Sequence. https://www.koeri.boun.edu.tr
Khameiss. B., Muftah M., Muftah M., Abdelgalil M.,, 2024. Scleractinian Corals From the Benghazi Formation in As Sahabi Area and From Al Jaghbub Formation in Tubroq Area, Libya: Implications for Coral Diversity and Biogeography. The 14th ICEEE-2023 International Annual Conference Abstract and Proceedings Book, pp.313-324.
Korkusuz Öztürk, Y., Konca, A. Ö., & Meral Özel, N. (2025). 3D Dynamic Rupture Simulations for the Potential Main Marmara Fault Earthquake. Journal of Geophysical Research: Solid Earth, 130(7). https://doi.org/10.1029/2024JB029585
Korkusuz Öztürk, Z., Yalcinkaya, E., & Polat, O. (2025). Seismological analysis of the 2025 Sea of Marmara earthquake sequence. Journal of Geophysical Research: Solid Earth (in press). https://agupubs.onlinelibrary.wiley.com/journal/21699356
Lee, E. M. (2008). Coastal cliff behaviour: Observations on the relationship between beach levels and recession rates. Geomorphology, 101(4), 558–571. https://doi.org/10.1016/j.geomorph.2008.02.003
Limber, P. W., Barnard, P. L., & Hapke, C. (2021). Coastal cliff sensitivity to waves, sea-level rise, and anthropogenic forcing. Geomorphology, 390, 107874.
Masoud, M., Abas, M., & Ajweedah, F. (2025). Textural Analysis and Clay Mineralogy of Sabkha Sediments in Wadi El-Sahal and Wadi El-Suwani, Tobruk City, Libya. Scientific Journal for Faculty of Science-Sirte University, 5(2), 9–17. https://doi.org/10.37375/sjfssu.v5i2.3427
Masoud, M., and Khameiss, B. (2024). Mineral Composition of Coastal Landforms in Wadi Al-Suwani at Al-Bardia Region, East of Tobruk City, Libya. Scientific Journal for the Faculty of Science-Sirte University, 4(2), 15–32.
Masoud, M and Khameiss, B. (2025). Investigation of Sedimentary Microfacies and mineralogical analyses of the Coastal Rock Cliffs (Wadi al-Zaytoun) in the Al Jaghbub, Al Faidyah, and Abraq Formations, NE Libya Libya. Scientific Journal for the Faculty of Science-Sirte University. Vol. 5, No. 1 - 24-41.
Masoud. A. M. M., (2020). Sedimentological and Environmental Studies on the Shore Zone of Tobruk City, Libya. Unpublished M.Sc. Thesis, Mansoura University, Egypt, 162.
Mavroulis, S., et al. (2025). Increased Preparedness During the 2025 Santorini–Amorgos (Greece) Earthquake Swarm. GeoHazards, 6(2), 32. https://doi.org/10.3390/geohazards6020032
Megerisi, M., & Mamgain, V. (1980) 'Al Khowaymat Formation - an enigma in the stratigraphy of northeast Libya', in Salem, M. J. and Busrewil, M. T. (eds.) The Geology of Libya, Volume 1, Academic Press, London, pp. 73-88.
National Observatory of Athens (NOA). (2025). Earthquake Bulletin: Euboea Seismic Swarm. https://www.gein.noa.gr
Özdemir, A., & Cakti, E. (2025). Ground motion characteristics of the 2025 Rhodes region earthquake. Soil Dynamics and Earthquake Engineering (in press). https://www.sciencedirect.com/journal/soil-dynamics-and-earthquake-engineering
Papadopoulos, G. A., Lekkas, E., & Fokaefs, A. (2025). Analysis of the Kasos–Crete twin earthquake sequence. Bulletin of the Geological Society of Greece (preprint). https://ejournals.epublishing.ekt.gr/index.php/geosociety
Pietersz, C.R., 1968. Proposed nomenclature for rock units in Northern Cyrenaica. In: Barr F.T. (Ed.), Geology and Archaeology of Northern Cyrenaica, Libya, Tripoli, pp. 125-130.
Queiroz, S. M. R., & Marques, F. M. S. F. (2019). Sea cliff instability susceptibility considering nearby human occupation and predictive capacity assessment. Engineering Geology, 253, 75–93. https://doi.org/10.1016/j.enggeo.2019.03.009
Trenhaile, A. S. (2002). Rock coasts, with particular emphasis on shore platforms. Geomorphology, 48(1–3), 7–22. https://doi.org/10.1016/S0169-555X(02)00172-3
Triantafyllou, A., Papadimitriou, P., & Karakostas, V. (2025). Seismotectonic characteristics of the Santorini–Amorgos seismic sequence. Geosciences (in press). https://www.mdpi.com/journal/geosciences
Utkucu, M., Durmuş, H., & Altunel, E. (2025). Tectonic implications of the 2025 Balıkesir (Sındırgı) earthquake. Tectonophysics (preprint). https://www.sciencedirect.com/journal/tectonophysics
Westoby, M., Lim, M., Hogg, M., Dunlop, L., Pound, M., Strzelecki, M., & Woodward, J. (2020). Decoding complex erosion responses for the mitigation of coastal rockfall hazards using repeat terrestrial LiDAR. Remote Sensing, 12(16), 2620. https://doi.org/10.3390/rs12162620
Young, A. P., & Ashford, S. A. (2006). Application of airborne LIDAR for seacliff volumetric change and beach-slope change. Journal of Coastal Research, 22(2), 307–318. https://doi.org/10.2112/05-0521.1