Influence of Anodizing Conditions on The Mechanical Properties of Anodic Alumina Films Fabricated in Sulphuric Acid
Keywords:
Anodizing, Anodic alumina film, Mechanical propertiesAbstract
The hardness and elastic modulus for the anodic films formed on high purity aluminium are investigated by nano-indentation and micro-hardness techniques. Micro-hardness investigation is revealed that the film hardness reduces as the distance increases from aluminium/film interface due to the chemical degradation in the outer region of the film during anodizing process, which increases with rise of the anodizing time and temperature. Moreover nano-indentation is shown that the hardness and elastic modulus for hard films are relatively independent of the selected anodizing conditions, with respective values of ~ 5.6 ± 0.40 GPa and ~
110.8 ± 6 GPa. However, for films fabricated at 20 C˚, the hardness and elastic modulus increases linearly with rise of current density and with reduction of anodizing time. This reduction of hardness and elastic modulus with increased anodizing time indicates the role of chemical degradation which is promoted by increased temperature.
References
S. Ono, K. Asami, T. Osaka, N. Masuko, Structure of anodic films formed on magnesium, J. Electrochem. Soc. 143, L62 (1996).
Capek D, Gigandet MP, Masmoudi M, Wery M, Banakh O. Long-time anodisation of titanium in sulphuric acid. Surf Coat Technol. 202(8):1379–84 (2008).
Kumar S, Sankara N, Saravana K. Influence of fluoride ion on the electrochemical behavior of b-Ti alloy for dental implant application. Corros Sci. 52(5):1721–7. (2010).
Neupane MP, Park IS, Lee SJ, Kim KA, Lee MH, Bae TS. Study of anodic oxide films of titanium fabricated by voltammetric technique in phosphate buffer media. J Electrochem Soc;4 (2):197–207 (2009).
D. Gong, C.A. Grimes, O.K. Varghese, W. Hu, R.S. Singh, Z. Chen, E.C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 3331 (2001).
R. Beranek, H. Hildebrand, P. Schmuki, Self-organized porous titanium oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett. 6 B12 (2003).
J.M. Macak, P. Schmuki, Anodic growth of self-organized TiO2 nanotubes inviscous electrolytes, Electrochim. Acta 52 1258 (2006).
V. Zwilling, M. Aucouturier, E. Darque-Ceretti, Anodic oxidation of titanium and TA6V alloy in chromic media: an electrochemical approach, Electrochim. Acta 45 921 (1999).
H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, A. Ghicov, K. Sirotna, P. Schmuki, Self-organized porousWO3 formed in NaF electrolytes, Electrochem. Commun. 7 295 (2005).
H. Tsuchiya, J.M. Macak, I. Sieber, L. Taveira, P. Schmuki, Self-organized high- aspect-ratio nanoporous zirconium oxides prepared by electrochemical anodization, Small 1 722 (2005).
F. Muratore, A. Baron-Wieche´ c, T. Hashimoto, P. Skeldon, G.E. Thompson, Anodic zirconia nanotubes: composition and growth mechanism, Electrochem. Commun. 12 1727 (2010).
T.J. LaTempa, X. Feng, M. Paulose, C.A. Grimes, Temperature-dependent growth of self- assembled hematite (-Fe2O3) nanotube arrays: rapid electrochemical synthesis and photoelectrochemical properties, J. Phys. Chem. C 113 16293(2009).
R.R. Rangaraju, A. Panday, K.S. Raja, M. Misra, Nanostructured anodic iron oxide filmas photoanode for water oxidation, J. Phys. D: Appl. Phys. 42 135303 (2009).
T. Hashimoto∗, X. Zhang, X. Zhou, P. Skeldon, S.J. Haigh, G.E. Thompson Investigation of dealloying of S phase (Al2CuMg) in AA 2024-T3aluminium alloy, Corros Sci 103 157–164 (2016).
F. Keller, M.S. Hunter, D.L. Robinson, Structural features of oxide coatings on aluminum, J. Electrochem. Soc. 100 411 (1953).
J.P. O’Sullivan, G.C. Wood, The morphology and mechanism of formation of porous anodic films on aluminium, Proc. R. Soc. London, Ser. A 317 51 (1970).
G.C. Wood, J.P. O’Sullivan, The anodizing of aluminium in sulphate solutions, Electrochim. Acta 15 1865 (1970).
S. Wernick, R. Pinner, P.G. Sheasby, The Surface Treatment and Finishing of aluminium and Its Alloys, Finishing Publications Limited, Teddington, (1996).
H. Masuda, K. Fukada, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina, Science 268 1466 (1995).
H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, T. Tamamura, Highly ordered nanochannel- array architecture in anodic alumina, Appl. Phys. Lett. 71 2770 (1997)
F. Li, L. Zhang, R.M.Metzger, On the growth of highly ordered pores in anodized aluminum oxide, Chem. Mater. 10 2470 (1998).
K. Nielsch, J. Choi, K. Schwirn, R.B. Wehrspohn, U. Gösele, Self-ordering regimes of porous alumina: the 10% porosity rule, Nano Lett. 2 (7) 677 (2002).
JP. Frayret, RP. Caprani, Anodic behaviour of titanium in acidic chloride containing media (HCl- NaCl). Influence of the constituents of the medium-I. Study of the stationary current. Calculation of the overall reaction orders. Electrochim Acta 26(12):1783–8 (1981).
LT. Duarte, C. Bolfarini, SR. Biaggio, RC. Rocha-Filho, PA. Nascente, Growth of aluminum-free porous oxide layers on titanium and its alloys Ti–6Al–4V and Ti– 6Al–7Nb by micro-arc oxidation. Mater Sci Eng C 41(1):343–8 (2014).
M. Fan, FL. Mantia, Effect of surface topography on the anodization of titanium. Electrochem Commun 37:91–5 (2013).
G. El-Mahdy, KB. Kim, Monitoring the atmospheric corrosion loss of copper during wet/dry cyclic conditions in oxalic acid solutions. Corrosion 63(2):171–7 (2007).
T. Ohtsuka, M. Masuda, N. Sato, Ellipsometric study of anodic oxide films on titanium in hydrochloric acid, sulfuric acid, and phosphate solution. J Electrochem Soc 132(4):787–92 (1985).
D. Wang, H. Li, H. Yang, J. Ma, G. Li, Tribological evaluation of surface modified H13 tool steel in warm forming of Ti–6Al–4V titanium alloy sheet. Chin J Aeronaut 27(4):1002–9 (2014).
P. Michal, A. Vagaská, M. Gombár, J. Kmec, E. Spišák, M. Badida, Prediction of the Effect of Chemical Composition of Electrolyte on the Thickness of Anodic Aluminium Oxide Layer. International Journal of Mathematical Models and Methods in Applied Sciences, vol 1, pp. 152-155 (2014).
P. Michal, A. Vagaská, M. Gombár, A.Hošovský, J.Kmec, Monitoring of influence of significant parameters during anodizing of aluminium. In: 12th International Symposium on Applied Machine Intelligence and Informatics SAMI (2014), IEEE, Herľany, pp.49-54 (2014).
J.R. Gregory, S.M. Spearing, Nanoindentation of neat and in situ polymers in polymer-matrix composites, Compos. Sci. Technol. 65 595e607 (2005).
J. Rodríguez, M. Garrido-Maneiro, P. Poza, M. G_omez-del Río, Determination of mechanical properties of aluminium matrix composites constituents, Mater. Sci. Eng. A 437 (2006) 406e412, http://dx.doi.org/10.1016/ j.msea. 07.118 (2006).
M. Hardiman, T.J. Vaughan, C.T. McCarthy, Fibrous composite matrix characterization using nanoindentation: the effect of fibre constraint and the evolution from bulk to in-situ matrix properties, Compos. Part A Appl. Sci. Manuf. 68 296e303 (2015).
J.M. Kranenburg, C.A. Tweedie, K.J. van Vliet, U.S. Schubert, Challenges and progress in high- throughput screening of polymer mechanical properties by indentation, Adv. Mater. 21 3551e3561 (2009).
J.A. King, D.R. Klimek, I. Miskioglu, G.M. Odegard, Mechanical properties of graphene nanoplatelet/epoxy composites, J. Appl. Polym. Sci. 128 4217e4223 (2013).
R. De Silva, P. Pasbakhsh, K. Goh, S.-P. Chai, J. Chen, Synthesis and characterization of poly (lactic acid)/halloysite bionanocomposite films, J. Compos. Mater 48 3705e3717 (2014).
T. Jin, X. Niu, G. Xiao, Z. Wang, Z. Zhou, G. Yuan, et al., Effects of experimental variables on pMMA nano-indentation measurements, Polym. Test. 41 37 (2015)
W. Sautter, Aluminium, 42, 10, 636-42 (1966).
G. M. Pharr Mater. Sci. Eng. A 253, 151 (1998).
A. Bolshakov and G. M. Pharr J. Mater.Res. 13, 1049 (1998).
A. German, Ph. D Thesis, University of Manchester (2002).
G. E. Thompson and G. C. Wood, Anodic films on aluminium, Treatise onMaterials Science and Technology, Ed. By J. C. Scully, 23, 205 (1983).