The Effect of Current Density, Time and Anodizing Temperature on The Local Burning of Anodic Alumina Films

Authors

  • Ali K. M. Al-zenati Department of Mechanical, Faculty of Engineering, Sirte University

Keywords:

Anodizing, Anodic alumina film, Local Burning

Abstract

The local burning phenomenon on the surface of the anodic alumina films is studied under wide range of current densities, anodizing times and anodizing temperature. The growth of nodules occurs at low anodizing temperature (0 0C) and at relatively high current density (10-40 mA/cm2). However, the local burning does not obtain at low current density i.e. 5 even at 0 0C. Moreover nodules formation is not existed on the surface of the anodic alumina films fabricated under the same previous anodizing conditions (5-40 mA/cm2) but at high anodizing temperature (20 0C). In fact, the increment of current density, voltage or electric field increases the local heat. Dissipation of local heat plays big role to prevent local burning rather than reduction of anodizing temperature. Therefore heat transfer is more important than decreased temperature of the electrolyte only which is enhanced the local burning. No obvious effect of anodizing time on occurrence of local burning because of the initial growth of nodules forms at the first seconds of anodizing time. The initial behavior of the voltage-time response and the ∆V/∆t-time transient is a good indicator for nodules growth.

References

X. Qina, J. Zhang, X. Menga, C. Denga, L. Zhang, G. Dingb, H. Zeng, X. Xu. Preparation and analysis of anodic aluminum oxide films. J. Applied Surface Scien 328 (2015) 459–465.

R.K. Choudhary, P. Mishra,V. Kain, K. Singh, S.Kumar, J.K. Chakravart. Scratch behavior of aluminum anodized in oxalic acid. J. Surface & Coatings Technology 283 (2015) 135– 147.

M. Pashchanka, J. J. Schneider. Self-Ordering Regimes of Porous Anodic Alumina. J. Phys. Chem., 120, (2016) 14590−14596.

Yi Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J Liao, C. Chen, Y. Shen, L. Jin. J. Electrochimica Acta 178 (2015) 11–17.

J. Evertsson, N. A. Vinogradov, G. S. Harlow, F. Garla. S. R. Mckbbin, L. Rullik, W. Linpe,

R. Felici, E. Lundgren. Self Organization of Porous Anodic Alumina Films. RSC Advances, 34,( 2018).

Z. B. Yang, J. C. Hu, K. Q. Li, S. Y. Zhang, Q. H. Fan, S. A. Liu. Advances of The Research Evolution on Aluminium. Conference series: Materials Science and Engineering Vol.282(2018)10P.

V.R. Capelossi, M. Poelman, I. Recloux, R.P.B. Hermandes, H.G. de Melo, M.G. Olivier, Corrosion protection of clad 2024 aluminum alloy anodized in tartaric- sulfuric acid bath and protected with hybrid sol–gel coating, Electrochim. Acta124 (2014) 6979.

T. Kikuchi, Y. Hara, M. Sakairi, T. Yonezawa, A. Yamauchi, H. Takahashi, Corrosion of Al–Sn–Bi alloys in alcohols at high temperatures. Part II: Effect of anodizing on corrosion, Corr. Sci. 52 (2010) 2525–2534.

T. Yanagishita, M. Masui, N. Ikegawa, H. Masuda, Fabrication of polymer antire- flection structures by injection molding using ordered anodic porous alumina mold, J. Vac. Sci. Technol. B 32 (2014) 021809.

T. Yanagishita, K. Nishio, H. Masuda, Anti-reflection structures on lenses by nanoimprinting using ordered anodic porous alumina, Appl. Phys. Express 2 (2009) 022001.

G.D. Sulka, K. Hnida, Distributed Bragg reflector based on porous anodic alumina fabricated by pulse anodization, Nanotechnology 23 (2012) 075303.

E. Kurowska, A. Brzózka, M. Jarosz, G.D. Sulka, M. Jaskuła, Silver nanowire array sensor for sensitive and rapid detection of H2O2, Electrochim. Acta 104 (2013) 439–447.

S. Zhang, L. Wang, C. Xu, D. Li, L. Chen, D. Yang, Fabrication of NiNiO–Cu metal–insulator–metal tunnel diodes via anodic aluminum oxide templates, ECS Solid State Lett. 2 (2013) Q1–Q4.

D. Liu, C. Zhang, G. Wang, Z. Shao, X. Zhu, N. Wang, H. Cheng, Nanoscale elec- trochemical metallization memories based on amorphous (La,Sr) MnO3using ultrathin porous alumina masks, J. Phys. D: Appl. Phys. 47 (2014) 085108.

Q. Lin, B. Hua, S. Leung, X. Duan, Z. Fan, Efficient light absorption with integrated nanopillar/nanowell arrays for three-dimensional thin-film photovoltaic applications, ACS Nano 7 (2013) 2725–2732.

T. Yanagishita, K. Nishio, H. Masuda, Fabrication of two-dimensional polymer photonic crystals by nanoimprinting using anodic porous alumina mold, J. Vac. Sci. Technol. B 28 (2010) 398–400.

T. Kikuchi, Y. Wachi, T. Takahashi, M. Sakairi, R.O. Suzuki, Fabrication of a meniscus microlens array made of anodic alumina by laser irradiation and electrochemical techniques, Electrochimica Acta 94 (2013) 269.

H. Jha, T. Kikuchi, M. Sakairi, H. Takahashi, Microfabrication of an Anodic Oxide Film by Anodizing Laser-textured Aluminum, Journal of Micromechanics and Microengineering 17 (2007) 1949.

T. Kikuchi, Y. Akiyama, M. Ueda, M. Sakairi, H. Takahashi, Fabrication of a three- dimensional micro-manipulator by laser irradiation and electrochem-ical techniques and the effect of electrolytes on its performance, Electrochim. Acta 52 (2007) 4480.

F. Keller, M.S. Hunter, D.L. Robinson, Structural Features of Oxide Coatings on Aluminum, Journal of the Electrochemical Society 100 (1953) 411.

G.E. Thompson, R.C. Furneaux, G.C. Wood, J.A. Richardson, J.S. Gode, Nucleation and growth of porous anodic films on aluminium, Nature 272 (1978) 433.

J. Wang, M. Singh, M. Tian, N. Kumar, B. Liu, C. Shi, J.K. Jain, N. Samarth, T.E. Mal-louk, M.H.W. Chan, Interplay between superconductivity and ferromagnetism in crystalline nanowires, Nature Physics 6 (2010) 389.

J.E. Houser, K.R. Hebert, The role of viscous flow of oxide in the growth of self- ordered porous anodic alumina films, Nature Materials 8 (2009) 415.

K.R. Hebert, S.P. Albu, I. Paramasivam, P. Schmuki, Morphological instability leading to formation of porous anodic oxide films, Nature Materials 11 (2012) 162.

H. Masuda, M. Yamada, F. Matsumoto, S. Yokoyama, S. Mashiko, M. Nakao, K. Nishio, Lasing from two-dimensional photonic crystals using anodic porous alumina, Advanced Materials 18 (2006) 213.

J. Choi, Y. Luo, R.B. Wehrspohn, R. Hillebrand, J. Schilling, U. Göele, Perfect two- dimensional porous alumina photonic crystals with duplex oxide layers, Journal of Applied Physics 94 (2003) 4757.

Q. Lin, B. Hua, S.F. Leung, X. Duan, Z. Fan, Efficient Light Absorption with Integrated Nanopillar/Nanowell Arrays for Three-Dimensional Thin-Film Photovoltaic Applications, ACS Nano 3 (2013) 2725.

R.C. Furneaux, W.C. Rigby, A.P. Davidson, The formation of controlled-porosity membranes from anodically oxidized aluminum, Nature 337 (1989) 147.

G.E. Thompson, G.C. Wood, Porous anodic film formation on aluminum, Nature 290 (1981) 230.

B. A. Scott, Trans. Inst. Met. Finish. 43, (1965) 1.

G. C. Tu, I. T. Chen, K. Shimizu and Keikinzoku, 40, (1990) 382.

I.De Graeve, H. Terryn and G. Thompson, J. Electrochem. Soc. 150(4), (2003) B 156.

I.De Graeve, H. Terryn and G. Thompson, ATB Metall. 43, (2003) 34.

S. Ono, M. Saito and H. Asoh, J. Electrochem. Solid-state Lett. 7, (2004) B21.

G. Patennarakis, and K. Moussoutzanis, J. Corros. Sci. 43, (2001) 1433.

S. Z. Chu, K. Wada, S. Inoue, M. Isogai, Y. Katsuta, and A.Yasumori, J. Electrochem. Soc. 153, (2006) B384.

P. Sheng Wei and T. Shih Shih, J.Electrochem. Soc. 154, 11, (2007)C678-C683.

T. Aerts, I. De Graeve and H. Terryn, J. Electrochim.Acta 54, (2008) 270-279.

Downloads

Published

2023-02-19