Spectrophotometric Determination of Nicotine in Cigarette Tobacco in Libyan Market Using Iron (III) and Potassium Ferricyanide


  • Hany A. Omara Chemistry Department, Faculty of Science, Sirte University, Sirte, Libya
  • Hamid M. Younis Chemistry Department, Faculty of Science, Sirte University, Sirte, Libya


Nicotine, Spectrophotometry, Oxidation reaction, Ferric chloride, Potassium ferricyanide, Cigarette tobacco in Libyan markets


A new simple, accurate, sensitive and economical procedure for the estimation of nicotine is described. In the presence of potassium ferricyanide, it has been demonstrated that Fe3+ is reduced to Fe2+ by nicotine in acidic medium. In addition, soluble Prussian blue (KFe[Fe(CN)6]) was produced by the reaction between the formed Fe2+ and potassium ferricyanide. The absorbance of soluble Prussian blue is measured at the absorption maximum of 736 nm. Beer's law is obeyed in the concentration range 0.1-4.4 μg/ml. The molar absorptivity is 3.05 x 104 l/mol.cm. Sandell sensitivity is 5.32 ng/cm2. The limits of detection as well as quantification are reported. Sex replicate analyses (n=6) of solutions containing three different concentrations of nicotine was carried out. The percent error and the RSD values have been reported. The proposed method was applied to the determination of nicotine in cigarette tobacco present in Libya and the results demonstrate that the method is equally accurate and precise as found from the t- and F-values. The reliability of the method was established by recovery studies using standard-addition technique.


Rodricks, J. V. Calculated Risks; Cambridge University Press: Cambridge, 1992, 51.

Jones, F. E. Toxic Organic Vapors in the Work Place; Lewis Publishers: London, CRC Press Inc.: New York, 1994.

Hamm, J. G. The Handbook of Pest Control; Frederick Fell Publishers Inc.: New York, 1982.

Newcomb, P. A.; Storer, B. E.; Marcus, P. M., Cancer Res. 1995, 55, 4906.

Drummer; Olaf, H.; Horomidis; Soumela, K.; Sophie-Syrjanen; Marie, L.; Tippett, P., J. Anal. Toxicol. 1994, 18, 134.

Romano, G.; Caruso, G.; Masumarra, G.; Povone, D.; Guciani, G., J. Planer Chromatogr. 1994, 7, 233.

Pichini, S.; Altiere, L.; Passa, A. R.; Rosa, M.; Zuccaro, P.; Pacifici, R., J. Chromatogr. A.

, 697, 383.

Yang X., Changjia W., Xiaopan Z., Haiyan C., Qi Z., Weitao S., Hui W., Qinglei Z. and Lan D., Anal. & Bioanal. Chem. 2011, 400 (2), 517-526.

Adnan M. M., Ahmad A. G., and Khaled W. O., J. Chrom. Scie., 2009, 47, 273-281.

Lang, H. Y.; Xie, Z. H.; Lei, Z. H.; Li, H. E.; Xi, B.; Dauxe, X. B. Ziran Kexueban. 1994, 24, 215.

Yang, S. S.; Smetena, I. Chromatographia 1995, 40, 375.

Pacifi, R.; Aetieri, F.; Gandini, L.; Lenzi, A.; Passa, R.; Pichini, S.; Rosa, M.; Zuccaro, P., Environ. Res. 1995, 69.

Koyano, M. K. O.; Oike, Y.; Goto, S.; Endo; Osamu, W.; Ikuo; Furuya, K.; Matsushita, H., J. Toxicol. Environ. Health 1996, 42, 263.

Atkinson, M. V.; Soon, M. H.; Purdie, N., Anal. Chem. 1984, 56, 1947.

Kodicek, E.; Reddi, K. K., Nature 1951, 168, 475.

Smith, C. L.; Cooke, M., Analyst 1987, 112, 1515.

Rai, M.; Ramachandran, K. N.; Gupta, V. K., Analyst 1994, 119, 1883.

Li, Z.; Zhang, X.; Zhou, H.; Song, H., Fenxi Hauxue 1986, 14(1), 60.

Farrag, N. M.; Said, A. A.; Diab, A. M.; Defrawi, E. L. S. M., J. Pharm. Sci. 1988, 29(1), 439.

Yunyou Z., Huapeng Y., Li Z., Hongwei X., Lian W., Junyong S., Lun W., Microchimica Acta

, 164(1-2), 63-68.

Eduardo C. F., Daniela M. O., Maria E. P., Marco A. Z., Analytica Chimica Acta, 2009,

(1, 2), 102–107.

Al-Tamrah S. A, Analytica Chimica Acta, 1999, 379(1–2), 75–80.

Shuqin G., Lifu L., , Xilin X., Zhiyuan Z., Nan D., Jiangfeng D., Spectrochimica Acta Part A: Molec. and Biom. Spect., 2010, 75 (5), 1540–1545.

Anupama A., Rachana R., Sunita G. and Gupta V. K., J. Chin. Chem. Soc., 2004, 51, 949-953.

Jihee H., and Kiyoung L., Nicotine & Tobacco Research, 2013, 15 (12), 2045-2052.

Jichao Liang, Fengmei Han, Yong Chen, Electrochemistry Communications, Volume 24, October 2012, Pages 93–96.

Li G, Z. Y. and Quanmin L., Spectrochimica Acta Part A: Mol. and Biomol. Spectro., 2009; 74(2), 307-311.

Wang S, Min W and Quan ML. Chinese Chem. Lett., 2009; 20 (1), 88-91.

Hua Z., Jing L., Kui W., Xinzhen D. and Quanmin D., Anal. Biochem. 2009, 388: 40-46.

Haiyan L., Ling Z., Jingming Z., Yuhong H., Pinang H. and Yuzhi F., Analytica Chimica Acta., 2005, 541:123-127.

Omara H. A., Inter. J. of Biolo. & Pharm. Res., 2014; 5(1): 27-32.

Basset J., Jeffery G. H. and Mendham , Vogel's Text Book of Quantitative Inorganic Analysis, I, 1978; 308.

Dunbar KR, Heintz RA. Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives Progress in Inorganic Chemistry. 1997; 45: 283-91.

Pavia, D. L., Lampman, G. M. and Kriz, G. S. Jr., Introduction to organic laboratory technique,

W. B. Saunders Co., Philadelphia, 1976, 50-54.

IUPAC. "Nomenclature, symbols, units and their usage in Spectrochemical Analysis II data Interpretation Analytical Chemistry Division", Spectrochim. Acta, B., 1978; 33, 241-245.

Miller JC and Miller JN, "Statistics in Analytical Chemical 3rd Ed. Ellis Horwood Chichester",