Spectral Distribution Method Calculations Of Nuclear Level Densities

Authors

  • Fawzeya Gharghar

DOI:

https://doi.org/10.37375/foej.v2i1.554

Keywords:

Keyword: Spectral distribution method, Hamiltonian, Nilsson Model, Residual interaction, Gaussian.

Abstract

The spectral distribution method offers an attractive framework in the study of nuclear level density with inclusion of the two-body force. We present a global parametrization of nuclear level densities taking into consideration the shell-model structures and residual interactions. The noninteracting and interacting particles parts of the Hamiltonian can be studied separately and then the results convoluted to calculate the total level density. The distribution for such a Hamiltonian shows that Gaussian distribution is a good approximation for the level density formalism.

 

References

M Sano, M Wakai, Nuclear Level Density and Inertia Parameters, Progress of Theoretical Physics, 48 (1972): 160–181.

A. Ignatyuk, R. Capote, Nuclear level densities, No. IAEA-TECDOC—1506 (2006).‏

D.Majumdar, B. Agrawal, S. Kataria, On angular momentum and parity dependence of nuclear level densities in a simple random sampling approach, Nuclear Physics A, 597 (1996): 212-230.

S. Okuducu, N. Akti, S. Akbaş, M. Kansu, Nuclear Level Density Parameters of Pb203-209 and Bi206-210 Deformed Target Isotopes Used on Accelerator-Driven Systems in Collective Excitation Modes. Science & Technology of Nuclear Installations, 2012(2012): 9.‏

A. Mengoni, Y. Nakajima, Fermi-gas model parametrization of nuclear level density. Journal of Nuclear Science and Technology, 31 (1994): 151-162.

S. Hilaire, S. Goriely, Global microscopic nuclear level densities within the HFB plus combinatorial method for practical applications. Nuclear Physics A, 779 (2006): 63-81.

W. Dilg, W. Schantl, H. Vonach, and M. Uhl. Level density parameters for the back-shifted fermi gas model in the mass range 40 < A < 250. Nuclear Physics A, 217 (1973):269-298.

A. Iljinov, M. Mebel, N. Bianchi, E. De Sanctis, C. Guaraldo, V. Lucherini, V. Muccifora, E. Polli, A. Reolon, P. Rossi. Phenomenological statistical analysis of level densities, decay widths and lifetimes of excited nuclei. Nuclear Physics A, 543(1992): 517-557.

H. Bethe. An attempt to calculate the number of energy levels of a heavy nucleus. Physics Letters, 50 (1936):332

A. Gilbert, A. Cameron, A Composite Nuclear-Level Density Formula with Shell Corrections. Canadian Journal of Physics, 43 (1965): 1446-1496.

T. Newton, Shell dependent level densities, Canadian Journal of Physics, 34 (1956): 804-829.

J. French, S. Rab, J. Smith, R. Haq, V. Kota, Nuclear spectroscopy in the chaotic domain: level densities. Canadian Journal of Physics, 84 (2006): 677-706.

J. French, V. Kota, Nuclear Level Densities and Partition Functions with Interactions, Physical Review Letters, 51(1983): 2183.

F. Chang, J. French, T. Thio, Distribution Methods for Nuclear Energies, Level Densities, and Excitation Strengths, Annals of Physics: 66 (1971): 137-188.

R. Haq, S. Wong, Level density in large spectroscopic spaces, Physics Letters B, 93 (1980): 357-362.

S. Wong. Nuclear statistical spectroscopy. Oxford University Press, New York, 7 (1986).

Published

2023-01-10

How to Cite

Gharghar, F. (2023). Spectral Distribution Method Calculations Of Nuclear Level Densities. Faculty of Education Scientific Journal, 2(1), 45–57. https://doi.org/10.37375/foej.v2i1.554

Issue

Section

Articles