Multiphase flow performance in the wellbore

Authors

  • Mahmoud Elsharafi McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA1
  • Abigail Reyes McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA1
  • Till Gebel McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA1
  • Tapiwa Gassler McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA1
  • Abdulhadi Alsadi McCoy School of Engineering, Midwestern State University, Wichita Falls, TX 76308, USA1
  • Jibriel Abusaleem Sirte University, Sirte, Libya

Keywords:

Multiphase flow, Experimental, simulated, methods, pressure, studding, examining

Abstract

Multiphase flow is found in various places both in nature and in practice, but multiphase flow is especially seen in the oil field operation. It occurs in oil and gas wells, gathering systems and many piping systems. The presence of liquid (oil/water) and gas must be accounted for when designing and predicting flow patterns in both wells and pipelines. Gas-liquid two phase flows are generally difficult to examine, model and predict in that the interactions between the phases are fairly complex and at times chaotic. In this paper, the behavior of multiphase flow in a piping system is investigated through both experimental and simulated methods. For experiments an undulating piping system was built to study vertical, horizontal and inclined sections. Experimental studies consist of studying and examining flow regimes in a complex piping system that models wellbore flow behavior. Furthermore, theoretical studies consist of complex two-phase flow simulations of pressure loss throughout the system. These experimental and theoretical studies help further understand the complexities of multiphase phenomenon.

References

Journal of Non-Newtonian Fluid Mechanics Volume 127, Issues 2–3, 1 May 2005, Pages 143-155

Grorgescu, Adelina. AAPP | Physical, Mathematical & Natural Sciences 2017, Vol. 95 Issue 2, p1- 14. 14p. 3 Diagrams, 1 Chart, 1 Graph. DOI: 10.1478/AAPP.952C2.

Stuhmiller, J.H., 1977. The influence of interfacial pressure forces on the character of the two-phase flow model equations. Int. J. Multiphase Flow 3, 551–560.

Zhang, D.Z., Prosperetti, A., 1997. Momentum and energy equations for disperse two-phase flow and their closure for dilute suspensions. Int. J. Multiphase Flow 23, 425–453.

Pressure Gradient Prediction of Multiphase Flow in Pipes A. Akintola Sarah1, U. Akpabio Julius1,2* and Onuegbu Mary-Ann.

Predicting Two-Phase Pressure Drops in Vertical Pipe, J. Orkiszewski, Volume 19 Issue 06, 1967.

Evaluation of Two Phase Flow Characteristics in A Pipeline: Homogenous Model Approach, Okoye Obuora A, International Journal of Scientific & Technology Research Vol. 5, Issue 07, July 2016

S. Farman Ali and H. Yeung. Experimental Study of Two-Phase Air–Water Flow in Large-Diameter Vertical Pipes. 2015

Adapted from J. K. Venard and R. L. Street (1975). Elementary Fluid Mechanics, 5th ed., Wiley, New York. At atmospheric pressure.

Data generated from the EES software developed by S. A. Klein and F. L. Alvarado. Original sources: Keenan, Chao, Keyes, Gas Tables, Wiley, 198; and Thermophysical Properties of Matter, Vol. 3: Thermal

Conductivity, Y. S. Touloukian, P. E. Liley, S. C. Saxena, Vol. 11: Viscosity, Y. S. Touloukian, S. C. Saxena, and P. Hestermans, IFI/Plenun, NY, 1970, ISBN 0-306067020-8.

Pineda-Pérez, H.; Kim, T.; Pereyra, E.; Ratkovich, N. Chemical Engineering Research & Design: Transactions of the Institution of Chemical Engineers Part A. Aug2018, Vol. 136, p638-653. 16p. DOI: 10.1016/j.cherd.2018.06.023.

TWO-phase flow; COMPUTATIONAL fluid dynamics; PARTICLE image velocimetry; LIQUID- vapor interfaces; VISCOSITY; LAMINAR flow

Li, Mengmeng; Li, Qi; Bi, Gang; Lin, Jiaen. Mathematical Problems in Engineering. 9/4/2018, p1-12. 12p. DOI: 10.1155/2018/2896251.

Ronshin, Fedor. EPJ Web of Conferences. 2017, Vol. 159, p1-5. 5p. DOI: 10.1051/epjconf/201715900040.

Bartkus, German; Kozulin, Igor; Kuznetsov, Vladimir. EPJ Web of Conferences. 2017, Vol. 159, p1-4. 4p. DOI: 10.1051/epjconf/201715900004.

Moutafchieva, Dessislava; Iliev, Veselin. Journal of Chemical Technology & Metallurgy. 2018, Vol. 53 Issue 3, p511-517. 7p.

Wenwu Zhang; Zhiyi Yu; Baoshan Zhu. Energies (19961073). May2017, Vol. 10 Issue 5, p1-14. 14p. 3 Diagrams, 3 Charts, 9 Graphs. DOI: 10.3390/en10050634.

Peña-Monferrer, C.; Gómez-Zarzuela, C.; Chiva, S.; Miró, R.; Verdú, G.; Muñoz-Cobo, J. L. Science & Technology of Nuclear Installations. 1/16/2018, p1-10. 10p. DOI: 10.1155/2018/2153019.

Xiao-Ping Chen; Jing-Yu Xu; Jian Zhang. Chemical Engineering Communications. 2016, Vol. 203 Issue 9, p1131-1138. 8p. 1 Diagram, 1 Chart, 12 Graphs. DOI: 10.1080/00986445.2016.1160227.

Fatehi Peikani, A.; Roshani, G.; Feghhi, S. Instruments & Experimental Techniques. Sep2017, Vol. 60 Issue 5, p752-758. 7p. DOI: 10.1134/S0020441217050049.

Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří. EPJ Web of Conferences. 2018, Vol. 180, p1-6. 6p. DOI: 10.1051/epjconf/201818002120.

Muszynski, Tomasz; Andrezejczyk, Rafal; Dorao, Carlos A. Archives of Thermodynamics. Sep2017, Vol. 38 Issue 3, p101-118. 18p. DOI: 10.1515/aoter-2017-0018.

Dong, S.; Wang, X. PLoS ONE. 5/10/2016, Vol. 11 Issue 5, p1-38. 38p. DOI: 10.1371/journal.pone.0154565.

Xu, Jingyuan; Lian, Zhanghua; Hu, Jian; Luo, Min. Energies (19961073). Oct2018, Vol. 11 Issue 10, pN.PAG-N.PAG. 1p. DOI: 10.3390/en11102773.

Farman Ali, S.; Yeung, H. Chemical Engineering Communications. Jun2015, Vol. 202 Issue 6, p823- 842. 20p. DOI: 10.1080/00986445.2013.879058.

Kolaas, Jostein; Drazen, David; Jensen, Atle. Journal of Dispersion Science & Technology. Oct2015, Vol. 36 Issue 10, p1473-1482. 10p. DOI: 10.1080/01932691.2014.996888.

Liu, Lei; Jiang, Pingchao; Li, Xiaobai. Chemical Engineering Communications. Jul2015, Vol. 202 Issue 7, p864-875. 12p. 2 Diagrams, 1 Chart, 5 Graphs. DOI: 10.1080/00986445.2013.867261.

Sharar, Darin J.; Bergles, Arthur E.; Jankowski, Nicholas R.; Bar-Cohen, Avram. Heat Transfer Engineering. 2016, Vol. 37 Issue 11, p972-984. 13p. 2 Color Photographs, 1 Black and White Photograph, 4 Diagrams, 2 Charts, 3 Graphs. DOI: 10.1080/01457632.2015.1098267.

Bhagwat, Swanand M.; Ghajar, Afshin J. Heat Transfer Engineering. 2015, Vol. 36 Issue 18, p1485- 1494. 10p. DOI: 10.1080/01457632.2015.1024979.

Sharafutdinov, R.; Khabirov, T.; Sadretdinov, A. Journal of Applied Mechanics & Technical Physics.Mar2015, Vol. 56 Issue 2, p177-181. 5p. DOI: 10.1134/S0021894415020029.

Mehta, Hemant B.; Banerjee, Jyotirmay. Heat Transfer Engineering. 2015, Vol. 36 Issue 6, p564-573. 10p. 1 Color Photograph, 5 Diagrams, 1 Chart, 4 Graphs. DOI: 10.1080/01457632.2014.939055.

Huajun Li; Haifeng Ji; Zhiyao Huang; Baoliang Wang; Haiqing Li; Guohua Wu. Sensors (14248220). Feb2016, Vol. 16 Issue 2, p1-13. 13p. DOI: 10.3390/s16020159.

Haifeng Ji; Huajun Li; Zhiyao Huang; Baoliang Wang; Haiqing Li. Sensors (14248220). 2014, Vol. 14 Issue 12, p22431-22446. 16p. DOI: 10.3390/s141222431.

Mitrović, Darko; Novak, Andrej. Mathematical Problems in Engineering. 3/16/2015, Vol. 2015, p1-8. 8p. DOI: 10.1155/2015/439704.

Sabzi, Peyman; Noroozi, Saheb. ASEAN Journal of Chemical Engineering. 2014, Vol. 14 Issue 1, p13- 24. 12p.

Filip, Alina; Baltaretu, Florin; Damian, Radu-Mircea. Mathematical Modeling in Civil Engineering. Dec2014, Issue 4, p22-30. 9p.

Downloads

Published

2023-01-26