Effect of panax ginseng root powder on some biochemical parameters in rabbits

Authors

  • Tahani Y. Omar Zoology Department, Faculty of Science, Sirt University, Libya
  • Fahima H. Hammam Zoology Department, Faculty of Science, Sirt University, Libya.
  • Ameerah T. Ramadhan Zoology Department, Faculty of Science, omar AL-Mukhtar University, Libya
  • Yousef K. A. Abdalhafid Zoology Department, Faculty of Science, omar AL-Mukhtar University, Libya

Keywords:

panax ginseng, biochemical parameters, panax ginseng root powder, rabbits

Abstract

This study was conducted to investigate the effect of orally administered panax ginseng Powder on some biochemical parameters in normal male rabbits. MATERIALS AND METHODS:The rabbits were divided into 3 equal groups; a 1st normal control received the treatment vehicle, distilled water., a 2nd normal rabbit treated with the, Powder suspension of Panax ginseng root at 150mg/kg, and a 3rd normal rabbit treated with the Powder suspension of Panax ginseng root at 300mg/kg . Treatment lasted for 15 days before sacrifice. RESULTS: The results revealed that administration of Powder suspension of Panax ginseng root at 150mg/kg body weight or 300mg/kg body weight significantly reduced glucose, triglycerides and cholesterol levels compared with control group, and an insignificant change in AST, ALP activities and urea, creatinine levels compared with control group. We concluded that Powder suspension of Panax ginseng root at dose 150 or 300 mg/kg body weight was beneficial in decreasing serum glucose, triglycerides and cholesterol levels, but it's no significant change on serum urea, creatinine levels and AST, ALT activities in normal rabbits.

References

Hu, S.Y. (1977). A contribution to our knowledge of ginseng. Am J Chin Med. 5: 1–23.

Zhou, W., Chai, H., Lin, P. H., Lumsden, A. B., Yao, Q. and Chen, C. (2004). Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit. 10(8): 187-192.

Fan, S., Zhang, Z., Su, H., Xu, P., Qi, H., Zhao, D., et al. (2020). Panax Ginseng Clinical Trials: Current Status and Future Perspectives. Biomed. Pharmacother. 132, 110832. doi: 10.1016/j.biopha.2020.110832.

Liu, X., Mi, X., Wang, Z., Zhang, M., Hou, J., Jiang, S., et al. (2020). Ginsenoside Rg3 Promotes Regression from Hepatic Fibrosis through Reducing Inflammation-Mediated Autophagy Signaling Pathway. Cel. Death Dis. 11, 454. doi:10.1038/s41419-020-2597-7.

Huang, Q., Zhang, H., Bai, L. P., Law, B. Y. K., Xiong, H., Zhou, X., et al. (2020). Novel Ginsenoside Derivative 20(S)-Rh2E2 Suppresses Tumor Growth and Metastasis In Vivo and In Vitro via Intervention of Cancer Cell Energy Metabolism. Cell Death Dis. 11, 621. doi:10.1038/s41419-020-02881-4.

Quan, L. H., Zhang, C., Dong, M., Jiang, J., Xu, H., Yan, C., et al. (2020). Myristoleic Acid Produced by Enterococci Reduces Obesity through Brown Adipose Tissue Activation. Gut 69, 1239–1247. doi:10.1136/gutjnl-2019-319114.

Xu, Y., Wang, N., Tan, H. Y., Li, S., Zhang, C., Zhang, Z., et al. (2020). Panax Notoginseng Saponins Modulate the Gut Microbiota to Promote Thermogenesis and Beige Adipocyte Reconstruction via Leptin-Mediated AMPKα/STAT3 Signaling in Diet-Induced Obesity. Theranostics 10, 11302–11323. doi:10.7150/thno.47746.

Attele, A. S., J. A. Wu, and C. S. Yuan. (1999). Ginseng pharmacology: Multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693.

Cho, W. C., W. S. Chung, S. K. Lee, A. W. Leung, C. H. Cheng, and K. K. Yue. (2006). Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats. Eur. J. Pharmacol. 550: 173-179.

LU, Y.J. and S.X. XU, J. (1985). Shenyang Pharmaceutical. Coll. 2 63–75.

Ernst, E. (2010). Panax ginseng: an overview of the clinical evidence. Journal of Ginseng Research. ;34(4):259–263.

Choi, K.T. (2008). Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C a Meyer. Acta Pharmacologica Sinica. 29(9):1109–1118.

Gillis, C.N. (1997). Panax ginseng pharmacology: a nitric oxide link? Biochem. Pharmacol., 54, 1 ± 8.

Salih, N. A .(2012). Effect of Ginseng (Panax Ginseng) on Experimentally Induced Diabetes Mellitus in Male Rabbits. Al-Anbar J. Vet. Sci. 5 (1): 187-194.

Steel, R. G. D. and Torrie, J. H. (1980). Principles and Procedures of Statistics. 5th Ed. McGraw-Hill Book Inc., New York, 1980.

Petkov, W. (1961). Arzneim. Forsch. (Drug Res.) 11, 288.

Lei, H. P. and Wang, C. K. (1957). Chung Hua Neik6 Tsa Chih 5, 861.

Ando, T., Muraoka, T., Yamasaki, N.and Okuda, H. (1980). Preparation of Anti-lipolytic Substance from Panax ginseng. Journal of Medical Plant Research, Vol. 38, pp. 18-23.

Takeuchi: UDC. (1965). The Reporr of che Ministry of Education of Japanese Government 615, 32; 615, 34.

Bykhovcsova, T. L.: Akad. N auk. SSSR, Ser. Biol. 31, 603 (1966).

Gordon, R. S., A. Cherkes: Proc. Soc. E xp. Biol. Med. 97, 150 (1958).

Waki, I., Kyo, H., Yasuda, M. and Kimura, M. (1982). Effects of a hypoglycemic component of ginseng radix on insulin biosynthesis in normal and diabetic animals. J. Pharmacobiodyn. 5: 547-554.

Sievenpiper, J. L., Sung, M. K., Di Buono, M. , Seung-Lee, K., Nam, K. Y. , Arnason, J. T. ,. Leiter, L. A. and Vuksan V. (2006). Korean red ginseng rootlets decrease acute postprandial glycemia: Results from sequential preparation- and dosefinding studies. J. Am. Coll. Nutr. 25: 100-107.

Sotaniemi, E. A., Haapakoski, E. and Rautio, A. (1995). Ginseng therapy in non-insulin-dependent diabetic patients. Diabetes Care 18: 1373-1375.

Lee, W. K., Kao, S. T. , Liu, I. M. and Cheng, J. T.(2006). Increase of insulin secretion by ginsenoside Rh2 to lower plasma glucose in Wistar rats. Clin. Exp. Pharmacol. Physiol. 33: 27-32.

Oshima, Y., Konno, C. and Hikino, H. ( 1985). Isolation and hypoglycemic activity of panaxans I, J, K, and L, glycans of Panax ginseng roots. J. Ethnopharmacol. 14: 255-259.

Trinh, H.T. , Sang-Jun, H. , Sang-Wook, K. , Young, C. L., and Dong-Hyun, K. (2007). Bifidus Fermentation Increases Hypolipidemic and Hypoglycemic Effects of Red Ginseng. J. Microbiol. Biotechnol., 17(7), 1127–1133.

Ismail, M. F., Gad, M. Z. and Hamdy, M. A. (1999). Study of the hypolipidemic properties of pectin, garlic and ginseng in hypercholesterolemic rabbits. Pharmacol. Res. 39: 157- 166.

Cui, X., Sakaguchi, T., Ishizuka, D., Tsukada, K. and Hatakeyama K. (1998). Orally administered ginseng extract reduces serum total cholesterol and triglycerides that induce fatty liver in 66% hepatectomized rats. J. Int. Med. Res. 26: 181-187.

Rho, M. C., Lee, H. S. , Lee, S. W. , Chang, J. S. , Kwon, O. E. , Chung, M. Y. and Kim, Y. K.( 2005). Polyacetylenic compounds, ACAT inhibitors from the roots of Panax ginseng. J. Agric. Food Chem. 53: 919-922.

Han, M.S., Han, I.H., Lee, D., An, J.M., Kim, S.N., Shin, M.S., et al.(2016). Beneficial effects of fermented black ginseng and its ginsenoside 20(S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J Ginseng Res.40:135-40.

Kim, S.J., Choi, H.S., Cho, H.I., Jin, Y.W., Lee, E.K., Ahn, J.Y., et al.(2015). Protective effect of wild ginseng cambial meristematic cells on d-galactosamine-induced hepatotoxicity in rats. J Ginseng Res .39:376-83.

Bak, M. J., Jun, M. and Jeong, W. S.(2012). “Antioxidant and hepatoprotective of the red ginseng essential oil in H2O2-treated HepG2 cells and CCl4-treated mice,” International Journal of Molecular Sciences, vol. 13, no. 2, pp. 2314–2330.

Kim, T. S. , Kim, Y. J. , Jang, S. A. , Yang, K. H. , Seung, N. K. and Sohn, E. H. (2012). “Protective effects of red ginseng against radiationinduced hepatotoxicity in mice,” in Proceedings of the Spring International Ginseng Conference, p. 100, The Korean Society of Ginseng, Jeju, Korea.

Abdel-Wahhab, M. A. , Gamil, K., El-Kady, A. A., ElNekeety, A. A. and Naguib, K. M. (2011). “Therapeutic effects of Korean red ginseng extract in Egyptian patients with chronic liver diseases,” Journal of Ginseng Research, vol. 35, no. 1, pp. 69– 79.

Kim, H. G. , Yoo, S. R. , Park , H. J. ,et al., (2011).“Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: a randomized, placebo-controlled clinical trial,” Food and Chemical Toxicology, vol. 49, no. 9, pp. 2229–2235.

Ramesh,T. , Kim, S. W. , Sung , J. H. ,et al., (2012).“Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats,” Experimental Gerontology, vol. 47, no. 1, pp. 77–84.

Gum, S. I. , Jo, S. J. , Ahn, S. H. et al., (2007).“The potent protective effect of wild ginseng (Panax ginseng C.A. Meyer) against benzo[α]pyrene-induced toxicity through metabolic regulation of CYP1A1 and GSTs,” Journal of Ethnopharmacology, vol. 112, no. 3, pp. 568–576.

Kang, K. S. , Yamabe, N., Kim, H. Y. and Yokozawa, T.(2007). “Effect of sun ginseng methanol extract on lipopolysaccharide-induced liver injury in rats,” Phytomedicine, vol. 14, no. 12, pp. 840– 845.

Lee, H. U. , Bae, E. A. , Han, M. J. , Kim, N. J. and Kim, D. H. (2005). “Hepatoprotective effect of ginsenoside Rb1 and compound K on tert-butyl hydroperoxide-induced liver injury,” Liver International, vol. 25, no. 5, pp. 1069–1073.

Wang,Y. , Ye, X. , Ma, Z. et al., (2008).,“Induction of cytochrome P450 1A1 expression by ginsenoside Rg1 and Rb1 in HepG2 cells,” European Journal of Pharmacology, vol. 601, no. 1–3, pp. 73– 78.

Park, H. J., Park, K. M. , Rhee M. H. , et al., (1996).“Effect of ginsenoside RB1 on rat liver phosphoproteins induced by carbon tetrachloride,” Biological and Pharmaceutical Bulletin, vol. 19, no. 6, pp. 834–838.

Shi, Y., Gao, Y., Wang, T., Wang, X., He, J., Xu, J., et al. (2020). Ginsenoside Rg1 Alleviates Podocyte EMT Passage by Regulating AKT/GSK3 β/β-Catenin Pathway by Restoring Autophagic Activity. Evid. Based Complement. Alternat Med. 2020, 1903627. doi:10.1155/2020/1903627.

Xie, L., Zhai, R., Chen, T., Gao, C., Xue, R., Wang, N., et al. (2020). Panax Notoginseng Ameliorates Podocyte EMT by Targeting the Wnt/β-Catenin Signaling Pathway in STZ-Induced Diabetic Rats. Drug Des. Devel Ther. 14, 527–538. doi:10.2147/DDDT.S235491.

Zhu, Y., Zhu, C., Yang, H., Deng, J., and Fan, D. (2020). Protective Effect of Ginsenoside Rg5 against Kidney Injury via Inhibition of NLRP3 Inflammasome Activation and the MAPK Signaling Pathway in High-Fat Diet/streptozotocin-Induced Diabetic Mice. Pharmacol. Res. 155, 104746. doi:10.1016/j.phrs.2020.104746.

Li, Y., Hou, J. G., Liu, Z., Gong, X. J., Hu, J. N., Wang, Y. P., et al. (2021). Alleviative Effects of 20(R)-Rg3 on HFD/STZ-induced Diabetic Nephropathy via MAPK/NF-κB Signaling Pathways in C57BL/6 Mice. J. Ethnopharmacol. 267, 113500. doi:10.1016/j.jep.2020.113500.

Wong, A. S., Che, C. M., and Leung, K. W. (2015). Recent Advances in Ginseng as Cancer Therapeutics: a Functional and Mechanistic Overview. Nat. Prod. Rep. 32, 256–272. doi:10.1039/C4NP00080C.

Blaine, J., and Dylewski, J. (2020). Regulation of the Actin Cytoskeleton in Podocytes. Cells 9, 1700. doi:10.3390/cells9071700.

Webster, A. C., Nagler, E. V., Morton, R. L., and Masson, P. (2017). Chronic Kidney Disease. Lancet 389, 1238–1252. doi:10.1016/S0140-6736(16)32064-5.

JIN, D., ZHANG, Y. , ZHANG, Y. , ZHOU L.D.R., SUN ,Y.D.Y., LIAN, F. AND TONG, X. (2021). PANAX GINSENG C.A.MEY. AS MEDICINE: THE POTENTIAL USE OF PANAX GINSENG C.A.MEY. AS A REMEDY FOR KIDNEY PROTECTION FROM A PHARMACOLOGICAL PERSPECTIVE. FRONT. PHARMACOL. 1-11.DOI: 10.3389/FPHAR.2021.734151

Downloads

Published

2023-01-21