Fredholm Integral Equations with Degenerate Kernel Method in Two Dimensional

Authors

  • Joud. M. Abdelaziz Department of Mathematics, Faculty of Sciences, Sirte University, Sirte, Libya
  • Zienab A. Elmaned Department of Mathematics, Faculty of Sciences, Sirte University, Sirte, Libya

DOI:

https://doi.org/10.37375/foej.v3i1.2586

Keywords:

Fredholm Integral Equation, The existence and uniqueness solution, Degenerate kernel method

Abstract

In this paper, The existence and uniqueness of solution is studied in L2[a,b]× L2[c,d]. Moreover, we use a degenerate kernel method to transform the integral equation into a linear algebraic system. In addition, the existence and uniqueness of this linear algebraic is discussed. Finally, numerical examples are considered and the error, in each case is computed by Maple.

References

-Alipanah, A. and Esmaeili, S. (2011). Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function. J. Comput. Appl. Math., (235), 5342-5347.

-Fallahzadeh, A. (2012). Solution of two-dimensional Fredholm integral equation via RBF-triangular method. J. Intrpl. Approx. Sci. Comput.

-Tari, A. and Shahmorad, S. (2008). A computational method for solving two dimensional linear Fredholm integral equations of the second kind. ANZIAM J., (49), 543-549.

-Lin, E. B. (2014). Wavelet based methods for numerical solutions of two-dimensional integral equations, Mathematica Aeterna, 4(8), 839-853.

-Mirzaee, F. and Piroozfar, S. (2010). Numerical solution of the linear two-dimensional Fredholm integral equations of the second kind via two-dimensional triangular orthogonal functions. J. King. Saud. Univ., (22).

-Ziyaee, F. and Tari, A. (2015). Differential transform method for solving the two-dimensional Fredholm integral equations, App. Appl. Math., 10(2), 852-863.

-Abdelaziz, J. M. (2022). On Some Numerical Methods for Solving Fredholm Integral Equations with Continuous Kernel. Sirte University Journal.

-Atkinson, K. E. (1997), The Numerical Solution of Integral Equation of the Second Kind, Cambridge.

-Hacia, L. (1993). Approximate solution of Hammerstein equations Appl. Anal., (50), 277-284.

-Golberg, M. A. (1979). Solution Methods for Integral Equations. Camberdge, N. Y.

-Golberg, M. A. (1990). Numerical Solution of Integral Equations, SIAM. London.

-Abdou, M. A. (2000). Integral equations with Cauchy kernel in the contact problem. Korean J. Comut. Appl. Math., 7 (3), 663-672.

-Abdou, M. A.; Mohamed, K. I. and Ismail, A. S. (2002). Toeplitz matrix and product Nystrom methods for solving the singular integral equation, Le Matematiche, Vol. LV 11– Fasc. 1 . PP, 21-37.

-Abdou, M. A.; Mohamed, K. I. and Ismail, A. S. (2003). On the numerical solutions of Fredholm-Volterra integral equation, J. Appl. Math. Comput., (146), 713-728.

-Abdou, M. A. and Hendi, F. A. (2005). The numerical solution of Fredholm integral equation with Hilbert kernel.J. KSIAM, 9 (1), 111-123.

-Abdou, M. A.; Elboraie, M. M. and Elkojok, M. K. (2008). Toeplitz matrix method for solving the nonlinear integral equation of Hammerstien type, in press. J. Comp. Appl. Math., 765-776.

-Schiavone, P.; Costanda, C. and Mioduchowski, A. (2002). Integral Methods in Science and Engineering. Birkhauser. Boston.

-Delves, L. M. and Mohamed, J. L. (1985). Computational Methods for Integral equations, Cambridge, London.

Published

2024-01-01

How to Cite

Joud. M. Abdelaziz, & Zienab A. Elmaned. (2024). Fredholm Integral Equations with Degenerate Kernel Method in Two Dimensional. Faculty of Education Scientific Journal, 3(1), 391–373. https://doi.org/10.37375/foej.v3i1.2586