Reordering method for solving linear system

المؤلفون

  • Joud M Abdelaziz Sirte University – Faculty of Science - Department of Mathematics
  • Souad A Abumaryam Sirte University – Faculty of Science - Department of Mathematics

DOI:

https://doi.org/10.37375/foej.v4i2.3454

الكلمات المفتاحية:

Linear System، Determinant، General solution

الملخص

This paper introduces a method for solving systems of linear equations, applicable to both non-homogeneous and homogeneous scenarios. The method involves converting the system into homogeneous equations by incorporating the constant terms into the variables. We employ matrix analysis to classify the solutions, distinguishing between unique solutions, infinite solutions, and cases with no solutions. This approach is particularly effective for linear systems where the number of equations matches the number of unknowns, utilizing determinants as a key analytical tool. We provide illustrative examples for each scenario, along with a general solution for cases exhibiting infinite solutions.

المراجع

Anton, H. (1994). Elementary linear algebra (2nd ed.). John Wiley & Sons, Inc.

Aydin, S. (2017). On the history of some linear algebra concepts: From Babylon to pre-technology.

Hoffman, K., & Kunze, R. (1971). Linear algebra (2nd ed.). Prentice-Hall.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. SIAM.

Strang, G. (2016). Introduction to Linear Algebra. Wellesley-Cambridge Press (5th).

Trefethen, L. N., & Bau, D. (1997). Numerical Linear Algebra. SIAM.

Lay, D. C., Lay, S. R., & McDonald, J. J. (2016). Linear algebra and its applications. Pearson.

Khan, M. A., Khan, A. A., & Khan, S. (2015). Matrix theory: A comprehensive introduction. Academic Press.

Riga, D. (2016). Systems of linear equations: Theory and applications. Springer.

Lanczos, C. (1952). An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. Journal of Research of the National Bureau of Standards.

Mary, J., Smith, A., & Johnson, R. (2017). A survey of three direct methods for solving systems of linear equations. Journal of Linear Algebra, 42(3), 215-230.

Golub, G. H., & Van Loan, C. F. (2013). Matrix computations (4th ed.). Johns Hopkins University Press.

التنزيلات

منشور

2025-07-31

كيفية الاقتباس

Abdelaziz , J. M., & Abumaryam, S. A. (2025). Reordering method for solving linear system. المجلة العلمية لكلية التربية, 4(2), 60–43. https://doi.org/10.37375/foej.v4i2.3454