نحو فهم قبول استخدام النظم الالكترونية في الإدارة : تقييم تجريبي باستخدام نموذج قبول التقنية TAM

Authors

  • عبدالعزيز مصطفى الولدة كلية الاقتصاد والعلوم السياسية / جامعة مصراته
  • مختار محمد اسميو كلية الاقتصاد والعلوم السياسية / جامعة مصراته
  • أمل الفيتوري العكروت كلية الاقتصاد والعلوم السياسية / جامعة مصراته

DOI:

https://doi.org/10.37375/esj.v2i4.2166

Keywords:

e-management systems, technology acceptance model TAM, perceived usefulness, perceived ease of use, perceived enjoyment

Abstract

Prior researches have presented valuable insights about the obstacles of the use of e-management systems and their role in improving institutional performance. From an organizational point of view, however, the most important issue is the factors that lead to the adoption of these systems. The present study, therefore, aims to understand the impacts of perceived usefulness, perceived ease of use, and perceived enjoyment, on the adoption of e-management systems. A dataset of 240 response were collected from the employees at the Libyan Iron and Steel Company. Structural Equation Modelling (SEM) was used to empirically test and validate the research model. Study findings suggest that employees adoption of e-management systems are significantly affected by perceived usefulness and perceived enjoyment. Nonetheless, the findings show that ease of use has no impact on employees intentions. Finally, the study draws on a number of effective theoretical and managerial implications, which may enhance the ability of businesses to adopt e-management systems.

References

• Abu-Shanab, E. A. (2017). E-government familiarity influence on Jordanians’ perceptions. Telematics and Informatics, 34(1), 103-113.

• Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action control, 11-39.

• Alalwan, A. A., Baabdullah, A. M., Rana, N. P., Tamilmani, K., & Dwivedi, Y. K. (2018). Examining adoption of mobile internet in Saudi Arabia: Extending TAM with perceived enjoyment, innovativeness and trust. Technology in Society, 55, 100-110.

• Balog, A., & Pribeanu, C. (2010). The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach. Studies in Informatics and Control, 19(3), 319-330.

• Brandon-Jones, A., & Kauppi, K. (2018). Examining the antecedents of the technology acceptance model within e-procurement. nternational Journal of Operations & Production Management, 38(1), 22-42.

• Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.

• Davis, F. D., Bagozzi, R. P., & Paul, W. R. (1989). User acceptance of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.

• Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1992). Extrinsic and intrinsic motivation to use computers in the workplace. Journal of Applied Social Psychology, 22(14), 1111-1132.

• Dolen, W. V., Dabholkar, P. A., & Ruyter, K. (2007). Satisfaction with online commercial group chat: the influence of perceived technology attributes, chat group characteristics, and advisor communication style. Journal of Retailing, 38(3), 339-358.

• Elwalda, A., Lu, K., & Ali, M. (2016). Perceived derived attributes of online customer reviews. Computers in Human Behavior, 2016(56), 306-319.tober

• 2019

• Field, A. (2005). Discovering statistics using spss for windows: Advanced techniques for the beginner. London: SAGE Publications Ltd.

• Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Reading: MA: Addison-Wesley.

• Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50.

• Gan, C., & Li, H. (2018). Understanding the effects of gratifications on the continuance intention to use WeChat in China: A perspective on uses and gratifications. Computers in Human Behavior, 78, 306-315.

• Hair, J. F., Black, W., Babin, B. J., & Anderson, R. E. (2010). Multirative data analysis: A global perspective (7 ed.). New Jersey: Pearson.

• Hamid, A. A., Abdul Razak, F. Z., Abu Bakar, A., & Salihin, W. (2016). The effects of perceived usefulness and perceived ease of use on continuance intention to use e-government. Procedia Economics and Finance, 35, 644-649.

• Hendrickson, A. R., Massey, P. D., & Cronan, T. P. (1993). On the test-retest reliability of perceived usefulness and perceived ease of use scales. MIS Quarterly, 227-230.

• Jaeger, P., & Thompson, K. (2003). E-government around the world: Lessons, challenges, and future directions. Government information quarterly, 389-394.

• Kurfalı, M., Arifoğlu, A., Tokdemir, G., & Paçin, Y. (2017). Adoption of e-government services in Turkey. Computers in Human Behavior, 66, 168-178.

• Li, J., Wang, J., Wangh, S., & Zhou, Y. (2019). Mobile Payment With Alipay: An Application of Extended Technology Acceptance Model. IEEE Access(7), 50380-50387.

• Lin, J. C.-C., & Lu, H. (2000). Towards an understanding of the behavioural intention to use a web site. International Journal of Information Management, 20(3), 197-208.

• October

• Luarn, P., & Lin, H.-H. (2005). Toward an understanding of the behavioral intention to use mobile banking. Computers in human behavior, 21(6), 873-891.

• Lucas, H. C., & Spitler, V. K. (1999). Technology use and performance: A field study of broker workstations. Decision sciences, 30(2), 291-311.

• MacCallum, R. C., Browne, M. W., & Sugawara, H. M. (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological methods, 1(2), 130-149.

• Nunnally, J., & Bernstein, I. (1994). Psychometric theory. New York: McGraw Hill.

• Peter, T. A., & Todd, P. A. (1995). On the use, usefulness, and ease of use of structural equation modeling in MIS research: a note of caution. MIS Quarterly, 19(2), 237-246.

• Ramayah, T., & Ignatius, J. (2005). Impact of perceived usefulness, perceived ease of use and perceived enjoyment on intention to shop online. ICFAI Journal of Systems Management, 36-51.

• Ray, S., & Rao, V. (2004). Evaluating Government Service: A customers’ Perspective of e-Government. the 4th European Conference on E-Government, (pp. 17-18). Dublin.

• Saade´, R., & Bahli, B. (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of the technology acceptance model. Information & management, 42(2), 317-327.

• Saeed, H., Ahmed, M. U., Hussain, S., & Farid, S. (2019). Online Support Services in E-learning: A Technology Acceptance Model. Sukkur IBA Journal of Computing and Mathematical Sciences, 2(2), 22-29.

• Scherer, R., Siddiq, F., & Tondeur, J. (2019). The technology acceptance model (TAM): A meta-analytic structural equation modeling approach to explaining teachers’ adoption of digital technology in education. Computers & Education, 128, 13-35

Published

2019-10-01

How to Cite

الولدة ع. م., اسميو م. م., & العكروت أ. ا. (2019). نحو فهم قبول استخدام النظم الالكترونية في الإدارة : تقييم تجريبي باستخدام نموذج قبول التقنية TAM. Economic Studies Journal, 2(4), 171–150. https://doi.org/10.37375/esj.v2i4.2166