Analysing the Impact of Multiple Constraints on the Solution Point in Game Theory: A Theoretical Study into Problems of Type (m×2) or (2×n)

Authors

  •  Abdalla  Mohamad Elshaikh أستاذ مشارك بكلية الاقتصاد والعلوم
  • Omar Mohamad Elramalli محاضر بكلية الاقتصاد والعلوم السياسية -جامعة مصراتة- ليبيا
  • Juma Omar Abdalla محاضر بكلية الاقتصاد والعلوم السياسية - جامعة مصراتة - ليبيا

DOI:

https://doi.org/10.37375/sujh.v15i2.3686

Keywords:

Game Theory, Special Case, Graphical Method, Linear Programming

Abstract

This paper addresses an atypical challenge in solving game-theoretic problems via the graphical method when the payoff matrix is of dimensions (m×2) or (2×n), implying that one player is limited to at most two strategies. The graphical method represents the two-strategy player’s options as the axes of a plane, while the second player’s strategies manifest as linear constraints. The optimal solution for the first player is then determined by the intersection of these constraints, discarding any that do not influence the solution point. The focus of this study is on the special scenarios where the solution point for the first player is defined by more than two constraints, which contrasts with the standard case, in which the solution point arises from the intersection of exactly two constraints. Such instances are non generic and require careful handling due to the presence of additional constraints. The paper aims to analyze this case using linear programming, with a focus on how to identify and exclude constraints when solving the second player’s problem via the graphical method, It also seeks to examine the impact of excluding these constraints on both players in order to ensure the attainment of the correct optimal solution. Moreover, it contributes to a deeper understanding of the solution procedure of the graphical method; especially in non-standard cases that pose additional challenges for the use of the graphical method. Through this analysis, the active constraints that must be used in the graphical solution process are identified, which implies excluding inactive constraints and considering them as redundant, thereby not to be utilized in the graphical solution procedure.

References

النعيمي، محمد. الحمداني، رفاه. الحمداني، أحمد. (2011). بحوث العمليات ، دار وائل للنشر، الأردن، عمان ط2.

الجواد، دلال. الفتال، حميد. (2008). بحوث العمليات، دار اليازوري العلمية للنشر والتوزيع، الأردن، عمان ط العربية.

Agrawal, B., Kumar, P. (2022). An Approach of L.P.P method –game problem using simplex method. International Journal of Research and Analytical Reviews (IJRAR), UGC and ISSN Approved-International Peer Reviewed Journal, Refereed Journal, Indexed Journal, Impact Factor, 9 (4), 1269-2348.‏

Ashour, M. A. H., Al - Dahhan, I. A., & Al - Qabily, S. M. (2020).Solving game theory problems using linear programming and genetic algorithms. In Human Interaction and Emerging Technologies: Proceedings of the 1st International Conference on Human Interaction and Emerging Technologies (IHIET 2019), August 22-24, 2019, Nice, France (pp. 247-252). Springer International Publishing.

Ji, Y., Li, M., & Qu, S. (2018). Multi-objective linear programming games and applications in supply chain competition. Future Generation Computer Systems, 86, 591-597.‏

Kearns, M., Littman, M. L., & Singh, S. (2013). Graphical models for game theory. arXiv preprint arXiv:1301.2281.

Peters, H. (2015). Game theory: A Multi- leveled approach. Springer.‏ Texts in Business and Economics, Berlin Heidelberg, (2nd ed.)

Kumar, S., & Reddy, D. S. N. (1999). Graphical solution of (n× m) matrix of a game theory. European journal of operational research, 112 (2), 467-471.‏

Vang, C. (2022). Implementing the Simplex Algorithm to Solve Zero-Sum Games.‏

Von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100 (1), 295–320

Von Neumann, J., & Morgenstern, O. (1944/1947) Theory of games and economic behavior. Princeton: Princeton University Press

Zermelo, E. (1913). Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels. In Proceedings of the fifth international congress of mathematicians ( Vol. 2, pp. 501-504). Cambridge: Cambridge University Press.‏

Published

2025-12-01

How to Cite

Mohamad Elshaikh,  Abdalla , Mohamad Elramalli, O., & Omar Abdalla, J. (2025). Analysing the Impact of Multiple Constraints on the Solution Point in Game Theory: A Theoretical Study into Problems of Type (m×2) or (2×n). مجلة جامعة سرت للعلوم الانسانية, 15(2), 224–239. https://doi.org/10.37375/sujh.v15i2.3686