Spatial variation of agricultural land uses in Tuz Khurmato district An applied study on selected provinces
DOI:
https://doi.org/10.37375/jlgs.v5i2.3418Keywords:
geographical analysis, spatial variability, land uses, agriculture, tuzkhurmato, applied studyAbstract
The study shows the analysis of spatial differences in agricultural land uses, and this is confirmed by the results of spatial statistical analysis between the selected agricultural districts, which were classified based on the creation of statistical spatial maps with real results using spatial statistical Analysis applications (Spatial statistical Analysis) and the cluster analysis method using Moran's Moran's (I) Method in modeling the spatial distribution of agricultural land uses in tuzkhurmatu district. Spatial statistical processing and analysis in geographic information systems (GIS) is an effective tool to identify spatial differences, relationships and correlations between different geographical phenomena, which makes it possible to accurately assess the use of agricultural land, determine the suitability of the land for agriculture and the potential for its development, as the research found that the distribution of wheat growing areas in the region shows a semi-random pattern, where the Moran index reached 0.193, Z-Score Value 1.32, and P-Value 0.186, which indicates the absence of a clear spatial grouping of the distribution of land planted with wheat, meaning this is the absence of a specific geographical organization at the significance levels of 0.05 and 0.10.
References
- الجبوري، أحمد خليل، (2021)، التحليل الجغرافي للتباين في الإنتاج الزراعي في قضاء طوزخورماتو، رسالة ماجستير (غير منشورة)، جامعة تكريت، كلية التربية للعلوم الإنسانية، قسم الجغرافية.
- خضير، عباس عبد الحسين، (2017)، الآثار البيئية للتوسع العمراني على استعمالات الأرض الزراعية لمدينة بغداد، مجلة كلية التربية الأساسية، الجامعة المستنصرية، (99).
- Abdelkader, M. S. (2010). Al-taḥlīl al-makānī fī al-dirāsāt al-jughrāfiyya: Al-usus wa al-taṭbīqāt [Spatial analysis in geographical studies: Principles and applications]. Dar Al-Fikr Al-Arabi.
- Anselin, L. (1995). Local indicators of spatial association—LISA. Geographical Analysis, 27(2). 93–115. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
- Chen, Y. (2020). An analytical process of spatial autocorrelation functions based on Moran’s index. Physica A: Statistical Mechanics and its Applications. https://doi.org/10.1016/j.physa.2019.123456.
- Mitchell, A. (2005). The ESRI Guide to GIS Analysis, Volume 2: Spatial Measurements and Statistics. Redlands, CA: ESRI Press.
- van Vliet, J., de Groot, H. L. F., Rietveld, P., & Verburg, P. H. (2015). Manifestations and underlying drivers of agricultural land use change in Europe. Landscape and Urban Planning, 133. https://doi.org/10.1016/j.landurbplan.2014.09.001
- Zubaidi, A. M. (2018). Agricultural land use and its impact on food security. Journal of Geographical Studies, 10(2).









