Analysis of Trends in Monthly and Annual Wind Speed in Northwestern Jordan during the Period (1990–2022(
DOI:
https://doi.org/10.37375/jlgs.v6i1.3759Keywords:
Trend analysis, Wind speed, Elevation above sea level, Northwestern JordanAbstract
This study aimed to detect trends in wind speed rates in northwestern Jordan during the period 1990–2022 and to analyze the form and nature of the spatial relationship between wind speed and elevation above sea level. The analysis was based on the Mann–Kendall Tau test and Sen’s slope estimator to assess trends in monthly and annual wind speed, in addition to the F-test to determine the statistical relationship between elevation above sea level and wind speed. The results revealed a decreasing trend in both annual and monthly wind speed, with rates of −1.4 and −1.84 m/s, respectively, at a statistical significance level of α = 0.05. Furthermore, the findings indicated a moderate positive correlation between wind speed and elevation above sea level, which was statistically significant at the same level (α = 0.05). The study recommended the development of adaptation strategies to cope with changing wind patterns.
References
المصادر و المراجع:
- دائرة الأرصاد الجوية الأردنية – عمان – بيانات غير منشورة.
- Azorin-Molina, C., Vicente-Serrano, S. M., McVicar, T. R., Jerez, S., Sanchez-Lorenzo, A., López-Moreno, J. I., ... & Espírito-Santo, F. (2014). Homogenization and assessment of observed near-surface wind speed trends over Spain and Portugal, 1961–2011. Journal of Climate, 27(10), 3692-3712.
- Diao, W., Zhao, Y., Dong, Y., Zhai, J., Wang, Q., & Gui, Y. (2020). Spatiotemporal variability of surface wind speed during 1961–2017 in the Jing-jin-ji region, china. Journal of Meteorological Research, 34(3), 621-632.
- Donohue, R. J., McVicar, T. R., & Roderick, M. L. (2010). Assessing the ability of potential evaporation formulations to capture the dynamics in evaporative demand within a changing climate. Journal of Hydrology, 386(1-4), 186-197.
- Drápela & Drápelová . (2011). Application of Mann-Kendall test and the Sen's slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997-2010. Beskydy, 4(2), 133-146.
- Drápela & Drápelová. (2011). Application of Mann-Kendall test and the Sen's slope estimates for trend detection in deposition data from Bílý Kříž (Beskydy Mts., the Czech Republic) 1997-2010. Beskydy, 4(2), 133-146.
- Fu, G., Yu, J., Zhang, Y., Hu, S., Ouyang, R., & Liu, W. (2011). Temporal variation of wind speed in China for 1961–2007. Theoretical and Applied Climatology, 104, 313-324.
- Hamed & Rao. (1998). A modified Mann-Kendall trend test for autocorrelated data. Journal of hydrology, 204(1-4), (pp 182-196).
- He YP, Monahan AH, Jones CG, Dai A, Biner S, Caya D, Winger K (2010) Probability distributions of land surface wind speeds over North America. J Geophys Res Atmos 115:D04103.
- Jiang, Y., Luo, Y., Zhao, Z., & Tao, S. (2010). Changes in wind speed over China during 1956–2004. Theoretical and Applied Climatology, 99, 421-430.
- Kendall, M. G. (1970). Rank Correlation Methods." Griffin, London.
- Klink, K. (2007). Atmospheric circulation effects on wind speed variability at turbine height. Journal of applied meteorology and climatology, 46(4), 445-456.
- Koudahe, K., Koffi, D., Kayode, J., Awokola, S., & Adebola, A. (2018). Impact of climate variability on crop yields in southern Togo. Environment Pollution and Climate Change, 2(1), (pp 1-9).
- Kousari, M. R., Ahani, H., & Hakimelahi, H. (2013). An investigation of near surface wind speed trends in arid and semiarid regions of Iran. Theoretical and applied climatology, 114(1), 153-168.
- Liu, C., Li, Q., Zhao, W., Wang, Y., Ali, R., Huang, D., ... & Wei, X. (2020). Spatiotemporal characteristics of near-surface wind in Shenzhen. Sustainability, 12(2), 739.
- McMahon, T. A., Peel, M. C., Lowe, L., Srikanthan, R., & McVicar, T. R. (2013). Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrology and Earth System Sciences, 17(4), 1331-1363.
- McVicar TR, Roderick ML (2010) Atmospheric science: winds of change. Nat Geosci 3(11):747–748
- Motiee & McBean . (2009). An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrology Research, 40(6),(pp 564-579).
- Motiee & McBean. (2009). An assessment of long-term trends in hydrologic components and implications for water levels in Lake Superior. Hydrology Research, 40(6), 564-579.
- Roderick ML, Rotstayn LD, Farquhar GD, Hobbins MT (2007) On the attribution of changing pan evaporation. Geophys Res Lett 34(34):251–270. https://doi.org/10.1029/2007GL031166
- Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63, (pp 1379–1389).
- Stuart. (1977). Spearman‐like computation of Kendall's tau. British Journal of Mathematical and Statistical Psychology, 30(1), 104-112.
- Tabari, H., Marofi, S., Aeini, A., Talaee, P. H., & Mohammadi, K. (2011). Trend analysis of reference evapotranspiration in the western half of Iran. Agricultural and forest meteorology, 151(2), 128-136.
- Taylor, R. (1990). Interpretation of the correlation coefficient: a basic review. Journal of diagnostic medical sonography, 6(1), 35-39.
- Trenberth, K. E. (2018). Climate change caused by human activities is happening and it already has major consequences. Journal of energy & natural resources law, 36(4), 463-481.
- Zhang, N., Wang, X., Chen, Y., Dai, W., & Wang, X. (2016). Numerical simulations on influence of urban land cover expansion and anthropogenic heat release on urban meteorological environment in Pearl River Delta. Theoretical and Applied Climatology, 126, 469-479.
- Zhu, J., & Liang, X. Z. (2013). Impacts of the Bermuda high on regional climate and ozone over the United States. Journal of Climate, 26(3), 1018-1032.









