Oscillation Criteria for a Class of Second-Order Nonlinear Difference Equations

المؤلفون

  • Sh. R. Elzeiny Al-Baha University, Kingdom of Saudi Arabia
  • Z. A. Elmaned Mathematics Department, Faculty of Science, Sirte University

الكلمات المفتاحية:

Différences équations، Oscillation، Ricati technique

الملخص

In this paper, we are concerned with the oscillation of a class of second- order non-linear difference equations. By using the Riccati technique some new oscillation criteria are established, therefore, we generalize and extend a number of  existing oscillation criteria. An example is also given to illustrate our results.

المراجع

R. P. Agarwal, Difference Equations and Inequalities, Marcel Dekker, New York, (1992).

R. P. Agarwal and P.J.Y. Wong, Advanced Topic in Difference Equa- tions, Kluwer Academic, Dordrecht, (1997).

S. S. Cheng, Hille-Wintner type comparison theorems for nonlinear difference equations, FunkcialajEkvacioj 37 (1994), 531-535.

S. S. Cheng and S. H. Saker, Oscillation criteria for difference equations with damping terms, Appl. Math. And comp. 148 (2004), 421-442.

E. M. Elabbasy and Sh. R. Elzeiny, Oscillation theorem for non-linear difference equation of the second order, Carpathian J. Math. 25 (1), 2009, 61-72.

M. M. A. El-Sheikh, M. H. Abd All and El. Maghrabi, Oscillation and nonoscillation of nonlinear second order difference eq.s, J. Appl. Math. And computing vol. 21 (1-2) (2006), 203-214.

L. H. Erbe and B. G. Zhang, Oscillation of second order linear differ-ence equations, Chainese J. Math. 16 (1988), 239-252.

G. H. Hardy, J. E. Littlewood and G. Polya, Inequalities, second ed, Cambridge Univ.Press, 1952.

W. G. Kelley and A. C. Peterson, Difference Equations : An introduce- tion with Applications, Academic Press, New York, (1991).

V. Lakshmikanthan and D. Trigiante, Difference Equations, Numeri- cal Methods and Application, Academic Press, New York, (1988).

W. T. Li and X. L. Fan, Oscillation criteria for second-order nonlinear difference equations with damped term, Comp. Math. Appl. 37 (1999), 17-30.

M. Peng, Q. Xu, L. Huang and W. G. Ge, Asymptotic and oscil-latory behavior of solutions of certain second-order nonlinear difference equations, comp. Math. Appl. 37 (1999), 9-18.

M. peng, W. G. Ge and Q. Xu, New criteria for the oscillation and existence of monotone solutions of second-order nonlinear difference equa-tions . Appl.Math. Comp. 114 (2000), 103-114.

B. Szmanda, Oscillation theorems for nonlinear second- order differ-ence equations, J. Math. Anal. Appl. 79 (1981), 90-95.

Z. Szafranski and B. Szmanda, Oscillation theorems for some nonlin- eardefference equations, Appl. Math. Comp. 83 (1997), 43-52.

E. Thandapani, I. Gyori and B. S. Lalli, An application of discrete inequality to second-order nonlinear oscillation, J. Math. Anal. Appl. 186 (1994), 200-208.

E. Thandapani and B. S. Lalli, Oscillation criteria for a second-order damped difference equation, Appl. Math. Lett. 8(1995), 1-6.

E. Thandapani and S. L. Marian, The asymptotic behavior of solu-tion of nonlinear second-order difference equation, Appl. Math. Lett 14 (2000), 611-616.

E . Thandapani and S. Pandian, Asymptotic and oscillatory behavior of general nonlinear difference equation, of second-order, comp. Math. Appl. 36 (1998), 413-421.

E . Thandapani, S. Pandian and B. S. Lelli, Oscillatory and nonoscilla-tory behavior of second- order functional difference equation, Appl. Math. Comp. 70 (1995), 53-66.

E . Thandapani and K. Ravi, Oscillation ofsecond-order half-linear differenceequation, Appl. Math.

Letters 13 (2002), 43-49.

E . Thandapani, K. Ravi, and G. R. Graef, Oscillationtheorems for quasilinear second-order differenceequations, Comp. Math. Appl42 (2001), 687-694.

P. J. Y. Wong and R. P. Agarwal, Oscillation and monotone solutions of second order quasilinear difference equations, FunkcialajEkvacioj 39 (1996), 491-517.

B. G. Zhang and G. D. Chen, Oscillation of certain second order nonlinear difference equations, J. Math. Anal. Appl. 199 (1996), 841-872.

Z. Zhang and P. Bi, Oscillation of second-order nonlinear difference equation with continuous variable, J. Math. Anal. Appl. 255 (2001), 349-357.

G. Zhang and S. S. Cheng, A necessary and sufficient oscillation condition for the discrete Euler equation, pan. Amer. Math. J. 9 (4) (1999), 29-34.

التنزيلات

منشور

2023-02-19