A molecular modeling investigation using DFT studies to examine the interaction between a melanin pigment and a Buckwheat
DOI:
https://doi.org/10.37375/susj.v14i2.3095Keywords:
Buckwheat, Melanin pigment, DFT and UV-vis spectrumAbstract
This study presents a summary of the use of buckwheat with its melanin pigment composition in human skin. The internal energy of buckwheat, as determined by the density functional function of molecular studies using the Goussian 09 and Hyperchem 08 programs, exhibited a value that was found to be nearly identical to that of melanin, which was found to be (-1109 Hartree, -1101 Hartree), respectively. To corroborate these findings, the molar number of buckwheat was incorporated in a ratio of 1:2, resulting in a notable reduction in polar moment by 1.759730 Debye. This was accompanied by an increase in stability and a decrease in polar moment, which in turn led to a reduction in activity and a limitation of the effect of UV radiation on melanin pigment.
References
Yilmaz, H. Ö., Ayhan, N. Y., & Meriç, Ç. S. (2020). Buckwheat: A useful food and its effects on human health. Current Nutrition & Food Science, 16(1), 29-34.
Zou, L., Wu, D., Ren, G., Hu, Y., Peng, L., Zhao, J., ... & Xiao, J. (2023). Bioactive compounds, health benefits, and industrial applications of Tartary buckwheat (Fagopyrum tataricum). Critical reviews in food science and nutrition, 63(5), 657-673.
Begemann, J., et al., Facing tropane alkaloid contamination in millet–Analytical and processing aspects. 2021. 13(2): p. 79-86.
Begemann, J., Ostovar, S., & Schwake-Anduschus, C. (2021). Facing tropane alkaloid contamination in millet–Analytical and processing aspects. Quality Assurance and Safety of Crops & Foods, 13(2), 79-86.
Pocienė, O., & Šlinkšienė, R. (2022). Studies on the possibilities of processing buckwheat husks and ash in the production of environmentally friendly fertilizers. Agriculture, 12(2), 193.
Diowksz, A., & Sadowska, A. (2021). Impact of sourdough and transglutaminase on gluten-free buckwheat bread quality. Food Bioscience, 43, 101309.
Yılmaz, H. Ö., & Meriç, Ç. S. (2024). Grains and Pulses in Diets of the Middle East and a Focus on Buckwheat. In Ancient and Traditional Foods, Plants, Herbs and Spices used in the Middle East (pp. 3-14). CRC Press.
Ruan, J., Zhou, Y., Yan, J., Zhou, M., Woo, S. H., Weng, W., ... & Zhang, K. (2022). Tartary buckwheat: An under-utilized edible and medicinal herb for food and nutritional security. Food Reviews International, 38(4), 440-454.
Verma, K. C., Rana, A. S., Joshi, N., & Bhatt, D. (2020). Review on common buckwheat (Fagopyrum esculentum Moench): A potent Himalayan crop. Ann. Phytomed, 9, 125-133.
Džafić, A., & Žuljević, S. O. (2022). The importance of buckwheat as a pseudocereal: Content and stability of its main bioactive components. Pseudocereals IntechOpen, 8, 79.
Luthar, Z., Golob, A., Germ, M., Vombergar, B., & Kreft, I. (2021). Tartary buckwheat in human nutrition. Plants, 10 (4), 700.
Zielińska, D., Turemko, M., Kwiatkowski, J., & Zieliński, H. (2012). Evaluation of flavonoid contents and antioxidant capacity of the aerial parts of common and tartary buckwheat plants. Molecules, 17(8), 9668-9682.
Raguindin, P. F., Itodo, O. A., Stoyanov, J., Dejanovic, G. M., Gamba, M., Asllanaj, E., ... & Kern, H. (2021). A systematic review of phytochemicals in oat and buckwheat. Food chemistry, 338, 127982.
Huda, M. N., Lu, S., Jahan, T., Ding, M., Jha, R., Zhang, K., ... & Zhou, M. (2021). Treasure from garden: Bioactive compounds of buckwheat. Food chemistry, 335, 127653.
Taylor, S. C. (2002). Skin of color: biology, structure, function, and implications for dermatologic disease. Journal of the American Academy of Dermatology, 46(2), S41-S62.
Del Bino, S., Ito, S., Sok, J., & Wakamatsu, K. (2022). 5, 6‐Dihydroxyindole eumelanin content in human skin with varying degrees of constitutive pigmentation. Pigment Cell & Melanoma Research, 35(6), 622-626.
Solano, F. (2014). Melanins: skin pigments and much more—types, structural models, biological functions, and formation routes. New Journal of Science, 2014(1), 498276.
Meredith, P., & Sarna, T. (2006). The physical and chemical properties of eumelanin. Pigment cell research, 19(6), 572-594.
Nicolaus, R. A., Piattelli, M., & Fattorusso, E. (1964). The structure of melanins and melanogenesis—IV: On some natural melanins. Tetrahedron, 20(5), 1163-1172.
Bhattacharya, B., Chauhan, D., Singh, A. K., & Chatterjee, M. (2021). Melanin based classification of skin types and their susceptibility to UV-induced cancer. Skin Cancer: Pathogenesis and Diagnosis, 41-67.
Dossou, S. S. K., Luo, Z., Wang, Z., Zhou, W., Zhou, R., Zhang, Y., ... & Wang, L. (2022). The dark pigment in the sesame (Sesamum indicum L.) seed coat: isolation, characterization, and its potential precursors. Frontiers in nutrition, 9, 858673.
BT, S. K., Hebbar, U. H., & Annapurna Singh, S. (2024). Isolation, purification, and physio-chemical characterization of melanin pigment from nigerseed hulls (Guizotia abyssinica). Preparative Biochemistry & Biotechnology, 1-9.
Kannan, P., & Ganjewala, D. (2009). Preliminary characterization of melanin isolated from fruits and seeds of Nyctanthes arbor-tristis. Journal of Scientific Research, 1(3), 655-661.
Gracheva, N. V., & Zheltobryukhov, V. F. (2016). A method for obtaining melanins from sunflower husk and studying its antioxidant activity. News Kazan Technol. Univ, 19, 154-157.
25. Glagoleva, A.Y., O.Y. Shoeva, and E.K.J.F.i.P.S. Khlestkina, Melanin pigment in plants: Current knowledge and future perspectives. 2020. 11: p. 770.
Downie, A. B., Zhang, D., Dirk, L. M., Thacker, R. R., Pfeiffer, J. A., Drake, J. L., ... & Snyder, J. C. (2003). Communication between the maternal testa and the embryo and/or endosperm affect testa attributes in tomato. Plant Physiology, 133(1), 145-160.
Wang, H., Pan, Y., Tang, X., & Huang, Z. (2006). Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT-Food Science and Technology, 39(5), 496-502.
Lucia, P., Thomas, E., & Alessandra, N. (2012). Black Sesame Pigment: DPPH Assay-Guided Purification, Antioxidant/Antinitrosating Properties, and Identification of a Degradative Structural Marker.
Park, K. I. (2012). A bHLH protein partially controls proanthocyanidin and phytomelanin pigmentation in the seed coats of morning glory Ipomoea tricolor. Horticulture, Environment, and Biotechnology, 53, 304-309.
Yu, C. Y. (2013). Molecular mechanism of manipulating seed coat coloration in oilseed Brassica species. Journal of applied genetics, 54, 135-145.
Wang, L. F., & Rhim, J. W. (2019). Isolation and characterization of melanin from black garlic and sepia ink. Lwt, 99, 17-23.
Varga, M., Berkesi, O., Darula, Z., May, N. V., & Palágyi, A. (2016). Structural characterization of allomelanin from black oat. Phytochemistry, 130, 313-320.
Shoeva, O. Y., Mursalimov, S. R., Gracheva, N. V., Glagoleva, A. Y., Börner, A., & Khlestkina, E. K. (2020). Melanin formation in barley grain occurs within plastids of pericarp and husk cells. Scientific reports, 10(1), 179.
Kreft, I., Vollmannová, A., Lidiková, J., Musilová, J., Germ, M., Golob, A., ... & Luthar, Z. (2022). Molecular shield for protection of buckwheat plants from UV-B radiation. Molecules, 27(17), 5577.
Rosiak, N., Cielecka-Piontek, J., Skibiński, R., Lewandowska, K., Bednarski, W., & Zalewski, P. (2023). Do rutin and quercetin retain their structure and radical scavenging activity after exposure to radiation?. Molecules, 28(6), 2713.
Solano, F. (2020). Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules, 25(7), 1537.
Verma, A., Zanoletti, A., Kareem, K. Y., Adelodun, B., Kumar, P., Ajibade, F. O., ... & Dwivedi, A. (2024). Skin protection from solar ultraviolet radiation using natural compounds: a review. Environmental Chemistry Letters, 22(1), 273-295.
Merin, K. A., Shaji, M., & Kameswaran, R. (2022). A review on sun exposure and skin diseases. Indian Journal of Dermatology, 67(5), 625.
Svobodová, A., & Vostalova, J. (2010). Solar radiation induced skin damage: review of protective and preventive options. International journal of radiation biology, 86(12), 999-1030.
Cavinato, M., & Jansen-Dürr, P. (2017). Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Experimental gerontology, 94, 78-82.
Działo, M., Mierziak, J., Korzun, U., Preisner, M., Szopa, J., & Kulma, A. (2016). The potential of plant phenolics in prevention and therapy of skin disorders. International journal of molecular sciences, 17(2), 160.
Burlando, B., Verotta, L., Cornara, L., & Bottini-Massa, E. (2010). Herbal principles in cosmetics: Properties and mechanisms of action. CrC Press.
Amberg, N., & Fogarassy, C. (2019). Green consumer behavior in the cosmetics market. Resources, 8(3), 137.
Desam, N. R., & Al-Rajab, A. J. (2021). The importance of natural products in cosmetics. Bioactive natural products for pharmaceutical applications, 643-685.
Sasounian, R., Martinez, R. M., Lopes, A. M., Giarolla, J., Rosado, C., Magalhães, W. V., ... & Baby, A. R. (2024). Innovative approaches to an eco-friendly cosmetic industry: a review of sustainable ingredients. Clean Technologies, 6(1), 176-198.
Mota, M. D., da Boa Morte, A. N., e Silva, L. C. R. C., & Chinalia, F. A. (2020). Sunscreen protection factor enhancement through supplementation with Rambutan (Nephelium lappaceum L) ethanolic extract. Journal of Photochemistry and Photobiology B: Biology, 205, 111837.
Lingwan, M., Pradhan, A. A., Kushwaha, A. K., Dar, M. A., Bhagavatula, L., & Datta, S. (2023). Photoprotective role of plant secondary metabolites: Biosynthesis, photoregulation, and prospects of metabolic engineering for enhanced protection under excessive light. Environmental and Experimental Botany, 209, 105300.
Kaur, P., Purewal, S. S., Sandhu, K. S., & Kaur, M. (2019). DNA damage protection: an excellent application of bioactive compounds. Bioresources and Bioprocessing, 6, 1-11.
Guo, L., Li, W., Gu, Z., Wang, L., Guo, L., Ma, S., ... & Chang, J. (2023). Recent advances and progress on melanin: from source to application. International journal of molecular sciences, 24(5), 4360.
Newton, M. D., Lathan, W. A., Hehre, W. J., & Pople, J. A. (1969). Self‐Consistent Molecular‐Orbital Methods. III. Comparison of Gaussian Expansion and PDDO Methods Using Minimal STO Basis Sets. The Journal of Chemical Physics, 51(9), 3927-3932.
Hehre, W. J., Stewart, R. F., & Pople, J. A. (1969). Self‐consistent molecular‐orbital methods. I. Use of Gaussian expansions of Slater‐type atomic orbitals. The Journal of Chemical Physics, 51(6), 2657-2664.
Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica chimica acta, 28, 213-222.