Immunoblot Investigation of Aggrecan Protein in Post-mortem Brain Tissue
DOI:
https://doi.org/10.37375/sjms.v1i1.256الكلمات المفتاحية:
Aggrecan، Brain tissue، White matter، MSالملخص
The MS tissue banks estimated that more than fifty millions patient in the world, each patient cost more than one millions for treatment, has social and economic effects. The breakdown of blood brain barrier considered as autoimmune disease and early events in MS parthenogenesis.
This study include investigation the modification of aggrecan glycoprotein in MS (30 samples) postmortem compared to NAWM (20 samples) via using western blotting. Fifty blocks of postmortem brain tissue were extracted their proteins for protein electrophoresis.
Results indicated that human brain tissue express aggrecan proteins and its fragments were increased in MS active lesion compared to the normal control. The presence of aggrecan fragments considered as evidence of activation of different matrix mattaloproeinase enzymes to help neuron outgrowth axons.
المراجع
Abuneeza, E., Woodroof, M.N., Haddock, G., Cross, A, (2014). Changes in chondroitin sulphate proteoglycans in multiple sclerosis, a role of ADAMTS-9, Neuroinflammation, PhD thesis Sheffield Hallam University.
Afshari, F. T., Kwok, J. C., White, L., & Fawcett, J. W. (2010). Schwann cell migration is integrin‐dependent and inhibited by astrocyte‐produced aggrecan. Glia, 58(7), 857-869.
Albert, M., Antel, J. Brück, W., & Stadelmann, C. (2007). Extensive cortical remyelination in patients with chronic multiple sclerosis. Brain Pathology, 17(2), 129-138.
Back, S. A., Tuohy, T. M., Chen, H., Wallingford, N., Craig, A., Struve, J., Chang, A. (2005). Hyaluronan accumulates in demyelinated lesi ons and inhibits oligodendrocyte progenitor maturation.Nature Medicine, 11(9), 966-972.
Chang, A., Tourtellotte, W. W., Rudick, R., & Trapp, B. D. (2002).Premyelinatingoligodendrocytes in chronic lesions of multiple sclerosis. New England Journal of Medicine, 346(3), 165-173.
Cregg, J. M., DePaul, M. A., Filous, A. R., Lang, B. T., Tran, A., & Silver, J. (2014).Functional regeneration beyond the glial scar. Experimental Neurology, 253, 197-207.
Cross, N., Chandrasekharan, S., Jokonya, N., Fowles, A., Hamdy, F., Buttle, D., & Eaton, C. (2006). The expression and regulation of ADAMTS‐1,‐4,‐5,‐9, and‐15, and TIMP‐3 by TGFβ1 in prostate cells: Relevance to the accumulation of versican. The Prostate, 63(3), 269-275.
Cua, R. C., Lau, L. W., Keough, M. B., Midha, R., Apte, S. S., & Yong, V. W. (2013). Overcoming neurite‐inhibitory chondroitin sulfate proteoglycans in the astrocyte matrix. Glia, 61(6), 972-984.
Fleming, J. C., Norenberg, M. D., Ramsay, D. A., Dekaban, G. A., Marcillo, A. E., Saenz, A. D., Weaver, L. C. (2006). The cellular inflammatory response in human spinal cords after injury. Brain, 129(Pt 12), 3249-3269.
Gray, E., Thomas, T. L., Betmouni, S., Scolding, N., & Love, S. (2008). Elevated matrix metalloproteinase-9 and degradation of perineuronal nets in cerebrocortical multiple sclerosis plaques. Journal of Neuropathology and Experimental Neurology, 67(9), 888-899.
Gibrel, G. G. (2012). The Role of ADAMTS-1,-4 and-5 in Multiple Sclerosis, PhD thesis Sheffield Hallam University.
Grimpe, B., & Silver, J. (2004). A novel DNA enzyme reduces glycosaminoglycan chains in the glial scar and allows microtransplanted dorsal root ganglia axons to regenerate beyond lesions in the spinal cord. The Journal of Neuroscience, 24(6), 1393-1397.
Haddock, G., Cross, A. K., Plumb, J., Surr, J., Buttle, D. J., Bunning, R. A., &Woodroofe, M. N. (2006). Expression of ADAMTS-1, -4, -5 and TIMP-3 in normal and multiple sclerosis CNS white matter. Multiple Sclerosis, 12(4), 386-396.
Inatani, M., Honjo, M., Otori, Y., Oohira, A., Kido, N., Tano, Y., Tanihara, H. (2001). Inhibitory effects of neurocan and phosphacan on neurite outgrowth from retinal ganglion cells in culture. Investigative Ophthalmology & Visual Science, 42(8), 1930-1938.
Jones, L. L., Margolis, R. U., &Tuszynski, M. H. (2003). The chondroitin sulfate proteoglycans neurocan, brevican, phosphacan, and versican are differentially regulated following spinal cord injury. Experimental Neurology, 182(2), 399-411.
Jones, G. C., & Riley, G. P. (2005). ADAMTS proteinases: A multi-domain, multi-functional family with roles in extracellular matrix turnover and arthritis. Arthritis, 7(4), 160-169.
Karimi-Abdolrezaee, S., Schut, D., Wang, J., &Fehlings, M. G. (2012).Chondroitinase and growth factors enhance activation and oligodendrocyte differentiation of endogenous neural precursor cells after spinal cord injury.PLoS One, 7(5), e37589.
Lau, L. W., Cua, R., Keough, M. B., Haylock-Jacobs, S., & Yong, V. W. (2013). Pathophysiology of the brain extracellular matrix: A new target for remyelination. Nature Reviews Neuroscience, 14(10), 722-729.
Lim, H., & Joe, Y. A. (2013). A ROCK inhibitor blocks the inhibitory effect of chondroitin sulfate proteoglycan on morphological changes of mesenchymal stromal/stem cells into neuron-like cells.Biomolecules& Therapeutics, 21(6), 447.
Lin, R., Rosahl, T. W., Whiting, P. J., Fawcett, J. W., & Kwok, J. (2011). 6-sulphated chondroitins have a positive influence on axonal regeneration.PLoS One, 6(7), e21499
Patrikios, P., Stadelmann, C., Kutzelnigg, A., Rauschka, H., Schmidbauer, M., Laursen, H., Lassmann, H. (2006). Remyelination is extensive in a subset of multiple sclerosis patients. Brain, 129, 3165-3172.
Porter, S., Clark, I., Kevorkian, L., & Edwards, D. (2005).The ADAMTS metalloproteinases.Biochem.J, 386, 15-27.
Profyris, C., Cheema, S. S., Zang, D., Azari, M. F., Boyle, K., & Petratos, S. (2004). Degenerative and regenerative mechanisms governing spinal cord injury. Neurobiology of Disease, 15(3), 415-436.
Properzi, F., Asher, R. A., & Fawcett, J. W. (2003). Chondroitin sulphate proteoglycans in the central nervous system: Changes and synthesis after injury. Biochemical Society Transactions, 31(2), 335-336.
Sherman, L. S., & Back, S. A. (2008). A ‘GAG’reflex prevents repair of the damaged CNS. Trends in Neurosciences, 31(1), 44-52.
Sloane, J. A., Batt, C., Ma, Y., Harris, Z. M., Trapp, B., & Vartanian, T. (2010). Hyaluronan blocks oligodendrocyte progenitor maturation and remyelination through TLR2. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11555-11560.
Troeberg, L., & Nagase, H. (2012). Proteases involved in cartilage matrix degradation in osteoarthritis.Biochimica et BiophysicaActa (BBA)-Proteins and Proteomics, 1824(1), 133-145.
Tan, C. L., Kwok, J. C., Patani, R., French-Constant, C., Chandran, S., & Fawcett, J. W. (2011). Integrin activation promotes axon growth on inhibitory chondroitin sulfate proteoglycans by enhancing integrin signaling. The Journal of Neuroscience, 31(17), 6289-6295.
Westling, J., Gottschall, P., Thompson, V., Cockburn, A., Perides, G., Zimmermann, D., & Sandy, J. (2004). ADAMTS4 (aggrecanase-1) cleaves human brain versican V2 at Glu405-Gln406 to generate glial hyaluronate binding protein.Biochem.J, 377, 787-795.
Yuan, Y., & He, C. (2013).The glial scar in spinal cord injury and repair.Neuroscience Bulletin, 29(4), 421-435.
Yiu, G., & He, Z. (2006).Glial inhibition of CNS axon regeneration. Nature Reviews Neuroscience, 7(8), 617-627.