Amelioration of waterlogging conditions on the growth Zea mays L. by marine algae extracts as biofertilizers and salicylic acid application

المؤلفون

  • Farag A. Hamad Faculty of agricultural, Omar Al-Mukhtar University, Libya
  • Zakia F. Mansur Faculty of agricultural, Omar Al-Mukhtar University, Libya
  • Salma F. Abdraba Faculty of sciences, Benghazi University, Libya
  • Abdelgader M. Saleh Faculty of agricultural, Omar Al-Mukhtar University, Libya

الكلمات المفتاحية:

maize plants,، marine algae extracts as biofertilizers,، salicylic acid foliar application,، field capacity

الملخص

Zea mays L. tolerated drought stress up to 150 % water field capacity (F.C.).Water stress (waterlogging condition) decreased maize growth parameters especially at high drought stress level 150 % water field capacity (F.C.% ) . Marine algae extracts as biofertilizers and salicylic acid foliar application increased height plants and leaf-area at 200 % water field capacity compared with absolute control treatment . Marine algae extracts as biofertilizers and salicylic acid foliar application increased maize dry shoot-mass 200 % field capacity as compared with control plant . Marine algae extracts as biofertilizers and salicylic acid foliar application increased maize chlorophyll a, b and carotenoids at 100 % field capacity as compared with control plant . Marine algae extracts as biofertilizers and salicylic acid foliar application highly significant increased shoot soluble carbohydrates up to 200 % field capacity as compared with the control plant. Calcium, Potassium and Phosphorus accumulation was decreased by decreasing water field-capacity in maize plants of control-plant.Phosphorus accumulation was increased by Marine algae extracts as biofertilizers and salicylic acid foliar application in the maize plants and recorded increases compared with control, respectively.Salicylic acid application with or without marine algae extracts as biofertilizers reported increases in proline in the shoot system .Hydrogen peroxide H2O2 generation was increased in flooding treatments and increases at 150 and 200 % field-capacity level, respectively. marine algae extracts as biofertilizers or salicylic acid reduced H2O2 concentration as compared to control plant.

السير الشخصية للمؤلفين

Farag A. Hamad، Faculty of agricultural, Omar Al-Mukhtar University, Libya

Faculty of agricultural, Omar Al-Mukhtar University, Libya

Zakia F. Mansur، Faculty of agricultural, Omar Al-Mukhtar University, Libya

Faculty of agricultural, Omar Al-Mukhtar University, Libya

Salma F. Abdraba، Faculty of sciences, Benghazi University, Libya

Faculty of sciences, Benghazi University, Libya

Abdelgader M. Saleh، Faculty of agricultural, Omar Al-Mukhtar University, Libya

Faculty of agricultural, Omar Al-Mukhtar University, Libya

المراجع

References:

A.O.A.C. ( 1995 ) : Official methods of analysis. 12th edition, W. Worwitz (ed.), Washington D.C.: Association of official Analysis Chemistry.

Abdel-Samad, H. (2005) : Improvement of salt tolerance by biofertilizers. Current topics plant Biol. 6: 41-55.

Ahmed, M.K.A.; M.H. Afini and M.F. Mohamed (2003). Effect of biofertilizers, chemical and or organic fertilizers on growth, yield and quality of some leguminous crops. Egypt J. of Agron. 25: 45-52.

Anjum S.; Xie, X. and Wang, L. ( 2011 ) : Morphological and biochemical responses of plants to drought stress. African J. Agric. Research. 6 : 2026 – 2032 .

Arafat, A. (2003): Response of some sorghum cultivars to salt stress and hormonal treatment. M. Sc. Thesis, South valley Univ., Qena, Egypt.

Athar, H.; Khan, A. and Ashraf, M. (2009): Inducing salt tolerance in wheat by exogenously applied ascorbic acid through different modes. J. Plant Nutr. 32: 1799-1817.

Bates LS, Walderd RP, Teare ID. (1973) Rapid determination of free proline for water stress studies. Plant Soil. 39:205–208.

Badr M.M. and Authman, S.A. ( 2006 ) : Effect of plant density, organic manure, bio and mineral nitrogen fertilizers on maize growth and yield and soil fertility. Ann. Agric. Sci. 44 : 75–88 .

Bashor C. and Dalton, D. ( 1999 ) : Effects of exogenous application and stem infusion of ascorbate on soybean root nodules. New Phyto. 142 : 16 – 26 .

Boddey R. and Dobereiner, T. ( 1988 ) : Nitrogen fixation associated with grasses and cereals: Recent results and prospective for future research. Plant Soil. 108 : 53 – 65 .

Bohnert H.; Nelson, D. and Jensen, R. ( 1995 ) : Adaptation to environmental stress . Plant cell. J. 7 : 1099 – 1111 .

Bray E. ( 1997 ) : Plant responses to water deficit. Trends Plant Sci. 2 : 48 – 54 .

Bray E.; Bailey-Serres, J. and Weretilnyk, E. ( 2000 ) : Response to abiotic stress. In W. Gruissem (ed.) pp. 1158 – 1248 . American Society of plant physiol. Rockville. MD.

Baniaghil, N.; Azanesh, M. and Shahbazi, M. (2013): The effect of PGPR on growth antioxidant enzymes of canola under salt stress. J. Appl. Biol. 3: 17-27.

Bashan, Y.; Holguin, G. and De-Bashan, L. (2004): Azospirillum – plant relationships: physiology and environmental advances. Can. J. Microbiol. 50: 521-577.

Brown, J. and Lilleland, O. (1946) : Rapid determination of potassium and sodium in plant material and soil extract by flame photometery. Proc Amer Soc Hortic Sci, 73:813.

Cocking, E.C. (2003). Endophytic colonization of plant roots by nitrogen-fixing bacteria. Plant and Soil. 252 (1): 169 - 175.

Chunchun, K.; M.M. Agrawal and B.R. Gupta (1998). Azospirillum and its potential as biofertilizer. Fertilizer- News, 43 (1): 47-50.

Duncan D.B. ( 1955 ) : Multiple range and multiple F tests . Biometrics, 11 : 1 – 42 .

Dennis E S, Dolferus R, Ellis M, Rahman M, Yu Y, Hoeren F U, Grover A, Ismond K P, Good A G and Peacock W J. (2000) Molecular strategies for improving water-logging tolerance in plants. J. Exp. Bot. 51: 89-97.

Dolatabadian, A.; Modarressanavy, S. and Asilan, K. (2010): Effect of ascorbic acid foliar application on yield of grain corn under water deficit stress conditions. Notulae. Scientia. Biological. 2: 45-50.

El-Komy, M.H.; Hamdia, M.A. and Abd El-Baki, G.K. (2003): Nitrate reductase in wheat plants grown under salinity and inoculated with Azospirillum spp. Biol. Plant, 46: 281-287.

El-Komy, H.; Abdel-Samad, H. and Hetta, A. (2004): Possible roles of nitrogen fixation and mineral uptake induced by rhizobacterial inoculation on salt tolerance of maize. Polish J. Microbiol. 53: 53-60.

El-Komy, H. (2005): Coimmobilization of Azospirillum lipoferum and Bacillus megaterium for successful phosphorus and nitrogen nutrition of wheat plants. Food Technol. Biotechnol, 43: 19-27.

Ejaz, B. Sajid, Z. and Aftab, F. (2012): Effect of exogenous application of ascorbic acid on antioxidant enzyme activities, proline, and growth of saccharum spp. under salt stress. Trukish J. Biol. 36: 630-640.

El-Refaey, F.; El-Dengawy, A. and Soad, A. (2011): Improving growth and salinity tolerance of carob by Azospirillum inoculation. J. Agric. Environ. Sci. 11: 371-384.

Fales F. ( 1951 ) : The assimilation and degradation of carbohydrate by yeast cells. J. Biol. Chem. 193 : 113 – 124 .

Fortmeir, R. and Schuber, S. (1995): Salt tolerance of maize the role of sodium exclusion. Plant cell Environ. 18: 1014-1048.

Gomaa, Elham, F. (2008). Effect of Biofertilizer cerealen under different levels of nitrogen fertilization on growth, yield and Anatomy of corn plant (Zea mays L.). Egypt. J. of Appl. Sci., 23 (4A): 55-74.

Geigenberger, P. (2003): Response of plant to little oxygen. Current opin. plant Biol. 6: 247-256.

Hamdia, M. and El-Komy, H. (1998): Effect of salinity, gibberic acid and Azospirillum inoculation on growth and nitrogen uptake of Zea mays. Biol. Plant. 109: 109-120.

Hossain F. (2001) Studies on combining ability for water-logging tolerance in Maize (Zea mays L.) Thesis, M.Sc.(Ag.), GBPUAT, Pantnagar, Distt. U.S. Nagar, India. Kennedy R.A., Rumpho M E and Fox T C. 1992. Anaerobic metabolism in plants. Plant Physiol. 100: 1-6.

Inderjit, L.K. and K.K.M. Dakshini (1997). Allelopathic effect of cyanobacterial inoculum on soil characteristics and cereal growth. Canadian J. Botany. 75 (8): 1267-1272.

Jaleel, C.; Manivannan, P. and Gopi, R. (2007): Pseudomonas enhances biomass yield cabaranthas under water deficit stress. Colloids surf. B. Biotransferea. 60: 7-11.

Jaleel, C.; Manivannan, P. and Vam, R. (2009) : Drought stress in plants: A review on morphological characteristic and pigments. Int. J. Agric. Biol. 11: 100-105.

Khera A S, Dhillon B S, Saxena V K, Barar H S and Malhi N S. (1990) Genetics and physiological studies in maize on tolerance to stress caused by water-loggedconditions. Project Final Report, Ad-hoc project, ICAR, New Delhi, India.

Li, L.; Van Standen, J. and Jager, A. (1998): Effects of plant growth regulators on the antioxidant metabolism of maize subjected to water stress. Plant growth regulator. 25: 81-87.

Mukhtar S, Bakler J L and Kanwar R S. 1990. Maize growth as affected by excess soil water. Trans. ASAE 33: 437-442.

Mekail, M.M.; M.A. Maatouk and I. Zanouny (2005). Efficiency of integrated nutrient supply system (INSS) of phosphorus fertilization in corn and faba bean cultivation, Minea J. of Agric. Res. Develop. (25) N (3) 405-420.

Malik, S. and Ashraf, M. (2012): Exogenous application of ascorbic acid stimulates growth and photosynthesis of wheat under drought. Soil Environ. 31: 72-77.

Metzner H.; Rau, H. and senger, H. (1965) : Untersuchungen Zur synchronisiebarket einzelner pigmentamgel von chlorella. Planta. 65 : 186 – 194 .

Norman J. and Campbell, G. ( 1994 ) : Canopy structure. In Pearey R.W. and H. Rundel eds. Plant Physiol. Ecol. pp. 301 – 326 .

Parle Milind and Dhamija Isha ( 2013 ) : Review article Zea maize : a modern craze, Int. Res. J. Pharm. 2013, 4 (6) 39 – 43 .

Radwan, F.I.; A.I.A. Ebida, M.G. Torky and Hoda, H. El- Kaliaf (2008). Influence of Gibberellic acid, Mycorrhizae and phosphate solubilizing bacteria on yield and chemical constituents of roselle plant (Hibiscus sabdariffa, L.). J. Adv. Agric. Res. V. 13 (2): 293-304.

Rodriguez, H. and Fraga, R. (1999) : Phosphorus solubilizing bacteria and their role in plant growth promotion. Biochem. Advances 17: 319-339.

Rathore T. R, Warsi M Z K, Lothrop J E and Singh N N. (1996) Production of maize under excess soil moisture (water-logging) conditions. pp. 56-63. In: 1st Asian Regional Maize Workshop, 10-12 Feb 1996, P.A.U., Ludhiana.

Rejli, M.; Jaballah, S. and Ferrchichi, A. (2008): Understanding physiological mechanism of Lotus under abiotic stress in arid climate. Arevieus – Lotus News Letter. 38: 20-36.

Saad, O.A.O. and E.T. Ahmed (2002). Response of Leucaene leucocephala seedlings to inoculation with rhizobia,mycorrhizae fungi, chemical amendments and organicfertilization. Proc. Minia. 1st Conf. For Agric. & environ.Sci. Minia, Egypt.

Sairam R.; Srivastava G. and Meena R. ( 2005 ) : Differences in antioxidant activity in response to salinity stress in wheat. Biol. Plant. 49 : 85 – 91 .

Sergiev V.; Alexiva E. and Karnov, E. ( 1997 ) : Effect of spermine on some endogenous protective system in plant. Compt. Rend. Acad. Bulg. Sci. 51: 121 – 124 .

Singh, D.; Srivastava, G. and Addin, M. (2001): Amelioration of negative effect of water stress in Cassia by benzyladenire and/or ascorbic acid. Biologia plant. 44: 141-143.

Steal R.G.D. and J.H. Torrie ( 1960 ) : Principles and Procedures of statistics : With Special Reference to the BiologicalSciences. McGraw-Hill, New York, Pages : 481 .

Sultana, N. Ikeda, T. and Kashem, A. (2002): Effect of seawater on ulation in rice. Photosynthetic. 40: 155-159.

Tattini, M.; Montagni, G. and Traversi, M. (2002): Gas exchange, water relations and osmotic adjustment in phillyrea grown at salinity conditions. Tree physiol. Apr. 22: 403-412.

Torbert H. A, Hoeft R G, Vanden-Heuvel R M, Mulvaney R L and Hollinger S E. (1993) Short-term excess water impact on corn yield and nitrogen recovery. J. Prod. Agric. 6: 337-344.

Warner, J. and Finkdstein, R. (1995): Arabidopsis mutants with reduced response to NaCl and osmotic stress. Physiol. Plant. 93: 659-666.

Yiu, J.; Liu, C. and Lai, Y. (2009): Waterlogging tolerance of welsh onion enhanced by exogenous spermidire and spermine. Plant physiol. Bio. 47: 710-716.

Zahran, H. (1999): Rhizobium – legume symbiosis and nitrogen fixation under severe conditions in an arid climate. Microbiol. Molecular Biol. Review. 63: 968-989.

Zaidi P. H and Singh N N. (2002) Identification of morpho-physiological traits for excess soil moisture tolerance in maize. pp. 172-183. In: K.K. Bora, K. Singh, A. Kumar (Eds.), Stressand Environmental Physiology. Scientific publishers, Jodhpur, India.

Zaidi P. H, Rafique S, Singh N N and Srinivasan G. (2002) Excess moisture tolerance in maize - progress and challenges. pp. 398-412. In: Proc. 8th Asian Regional Maize Workshop, 5-9 August 2002, Bangkok, Thailand.

Zaidi P. H, Rafique S and Singh N N. (2003) Response of maize (Zea mays L.) genotypes to excess moisture stress: morpho - physiological effects and basis of tolerance. Eur. J. Agron. 19: 383-399.

Zaidi P. H, Rafique S, Rai P K, Singh N N and Srinivasan G. (2004) Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crop Res. 90: 189-202.

Zaidi P. H, Maniselvan P, Srivastava A, Singh R P, Singh N N and Srinivasan G. (2007a) Association between line per se and hybrid performance under excessive soil moisture stress in tropical maize (Zea mays L.). Field Crop Res. 101: 117-126.

Zaidi P. H, Mehrajuddin, Jat M L, Pixley K, Singh R P and Dass S. (2009) Resilient maize for improved and stable productivity of rainfed environment of South and South-East Asia. Maiz for Asia - Emerging Trends andTechnologies. Proc. 10th Asian Regional Maize Workshop, 20-23 October, 2008, Makassar, Indonesia.

التنزيلات

منشور

2023-11-21

كيفية الاقتباس

Farag A. Hamad, Zakia F. Mansur, Salma F. Abdraba, & Abdelgader M. Saleh. (2023). Amelioration of waterlogging conditions on the growth Zea mays L. by marine algae extracts as biofertilizers and salicylic acid application. مجلة البيان العلمية, (9), 591–574. استرجع في من http://journal.su.edu.ly/index.php/bayan/article/view/2311