Spatio-Temporal Patterns In Toroidally Coupled Oscillator Systems

المؤلفون

  • Ramadan Hamad Akila محاضر، قسم الرياضيات، كليه العلوم، جامعه بنغازي
  • Safia Ramadan Hamad Akila محاضر مساعد، قسم الرياضيات، كليه العلوم، جامعه بنغازي

الكلمات المفتاحية:

Spatio-، temporal pattern formation,، coupled oscillator systems,، Symmetry breaking,، vHopf bifurcation.، AMS (M0S) 2000 SUBJECT CLASSIFICATION: 37G40, 37G10, 34C15, 74F10

الملخص

This paper presents a study of the spatio-temporal patterns of oscillations that are possible in systems of identical oscillators. These oscillators are symmetrically coupled with the symmetry of a discrete torus. The analysis deals with periodic motions of the entire array rather than individual cells. It exploits the symmetry of the array using results from equivariant bifurcation theory. This work presents a complete list of invariants, equivariants, normal forms, isotropy subgroups and fixed-points subspaces, for the cases with periodicity . It is carried out for the case of a rectangular array with toroidal symmetry. The analysis included all the generic equivariant Hopf bifurcations in this setting and determines the onset, stability and the generic behavior of spatio-temporal patterns for all primary branches. We also find all possible secondary patterns of oscillations using the Theorem.

السير الشخصية للمؤلفين

Ramadan Hamad Akila، محاضر، قسم الرياضيات، كليه العلوم، جامعه بنغازي

محاضر، قسم الرياضيات، كليه العلوم، جامعه بنغازي

Safia Ramadan Hamad Akila، محاضر مساعد، قسم الرياضيات، كليه العلوم، جامعه بنغازي

محاضر مساعد، قسم الرياضيات، كليه العلوم، جامعه بنغازي

المراجع

REFERENCES

R. Akila and W.F. Langford, Flow-induced vibration patterns in heat exchanger arrays, Submitted to Can. Appl. Math. Quart. (2004), 38 pages.

P.-L. Buono, Models of central pattern generation for quadruped locomotion: II. Secondary gaits, Journal of Mathematical Biology, 42, (2001) 327-346.

P.-L. Buono, Models of central pattern generation for quadruped locomotion: I. Primary gaits, Journal of Mathematical Biology, 42, (2001) 291-326.

S.A. Campell, I. Ncube, and J. Wu, Multistability and stable asynchronous periodic oscillations in a multiple-delayed neutral system, Preprint, Department of Applied Mathematics, University of Waterloo, Canada (2004).

P. Chossat and R. Lauterbach, Methods in equivariant bifurcation and dynamical systems, World Scientific Publishing Co. Pte. Ltd (2000)

B. Dionne M. Golubitsky and I.N. Stewart, Coupled cells with internal asymmetry: I. Wreath products, Nonlinearity, 9, (1996) 559-574.

B. Dionne M. Golubitsky and I.N. Stewart, Coupled cells with internal asymmetry: II. Direct products, Nonlinearity, 9, (1996) 559-574.

M. Golubitsky and I.N. Stewart, The Symmetry Perspective, Birkhauser Verlag, CH-4010 Basel, Switzerland. (2002)

M. Golubitsky, I.Stewart and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory: Volume I, Springer-Verlag New York, Inc. (1986).

M. Golubitsky, I.Stewart and D.G. Schaeffer, Singularities and Groups in Bifurcation Theory: Volume II, Springer-Verlag New York, Inc. (1988).

A.T. Lawniczak, A. Gerisch, and K. Maxie, Effects of randomly added links on a phase transition in data network traffic models, Proceedings of the Third International DCDIS Conference, Watam Press, (2003) 384-389.

D. Wood, A Cautionary tale of coupling cells with internal symmetries, International Journal of Bifurcation and Chaos,11, (2001) 1-17.

D. Wood, Hopf bifurcation in three coupled oscillators with internal -symmetry, Dynamics and Stability of Systems, 13, (1998) 55-93.

التنزيلات

منشور

2023-11-08

كيفية الاقتباس

Ramadan Hamad Akila, & Safia Ramadan Hamad Akila. (2023). Spatio-Temporal Patterns In Toroidally Coupled Oscillator Systems. مجلة البيان العلمية, (16), 275–262. استرجع في من http://journal.su.edu.ly/index.php/bayan/article/view/1943