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Abstract 

We implement the boundary element method for the Helmholtz equation for a two-dimensional unit disc 

with Dirichlet boundary conditions. This yields boundary integral equations of Fredholm kind. Here we 

discuss the advantages of the normal derivative method which leads to a second-kind Fredholm integral 

equation instead of dealing with the resulting first-kind Fredholm integral equation. This is shown by 

comparing the accuracy of the boundary functions which are computed using both types of integral 

equations. We point out that it may be advantageous for smooth boundary to use the normal derivative 

method to set up the boundary integral kernels which gets rid of the weakly-singular integrals.. 
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1. Introduction 
 

The Boundary Element Method (BEM) [1, 2, 3] is a powerful technique for obtaining an 

approximate solution for ordinary or partial differential equations that arise in scientific and 

engineering applications, such as wave scattering, radiation and propagation. The Boundary 

Integral Equations (BIEs) [4] are respectively derived for the wave-function or its normal 

derivative or for both quantities depending on whether Newmann, Dirichlet or Robin (mixed) 

boundary conditions are set on the boundary.  So implementing the boundary element method 

leads to a Fredholm BIEs of first or second kinds [4]. The mechanism of the BEM is to discretize 

the boundary into a number of elements to compute the integrals numerically over such elements. 

The system of BIEs is then converted into a linear system of algebraic equations which can be 

solved numerically. The Fredholm equation of first and second kinds both possess a unique 
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solution and well adopted for numerical calculations [2]. The BEM formulation is based on the 

Green second identity which requires that the involved functions to be twice continuously 

differentiable [1]. Non-smooth boundary with sharp corners and edges is commonly used in 

modelling engineering problems. However, for such boundaries one usually make the assumption 

that the boundary is piecewise twice differentiable, that is, the boundary is constructed as finite 

union of twice differentiable sub-intervals; nevertheless the whole boundary is not twice 

differentiable. Corner nodes cause problems for two reasons. Firstly, the normal vector at a corner 

is not well defined, and the normal derivatives change its value sharply across the corner. This 

leads to discontinuity across the corner. Secondly, at a corner node, the standard jump relation is no 

longer valid and needs to be adjusted to accommodate the corners as shown in [4]. Therefore, the 

treatment of corners in the BEM formulation requires great care in order to obtain an accurate 

numerical solution in the presence of corners. Yan and Lin [5] present a review article on the 

possible treatment of the corners problem. 

In this paper, we consider a smooth boundary such as unit disc with Dirichlet Boundary Conditions 

(DBCs), these BCs are typical for plate or memebrance problems with clamped or fixed 

boundaries. The governing equation is the Helmholtz equation. This paper is structured as follows: 

in section 1 we set up the model and we show how to apply the BEM for the Helmholtz equation 

to construct the boundary functions and the quantization condition which can be used to compute 

the spectrum. In section 2, we discuss the advantages of the second kind Fredholm equation over 

the first kind Fredholm equation for the unit disc. Then we show a comparison of the accuracy of 

the boundary functions computed using both the first and second kind BIEs. In section 3, we show 

how to use the obtained boundary functions to compute the Green function at any interior point of 

the considered domain. A conclusion is drawn in section 4. 

1.  Derivation of the BIEs for the Helmholtz equation  

The homogeneous Helmholtz equation is defined as  

  

   
                                                                                

where  is the corresponding eigenfunction to the eigenvalue k, q is an interior point and 2 is the 

two-dimensional Laplace operator in the Cartesian coordinates. We set the DBCs on the boundary 

of the domain D, that is  

                     .  

The first step within the BEM formulations is to introduce the fundamental solution of the problem 

which is essential to establish the necessary BIEs. The fundamental solution of a differential 

equation is a solution with a unit point source equal to        applied at a given, fixed source 

point  . The following equation thus holds,  

 (  
    )                 ,                                           (2) 
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where    is the fundamental solution, also it is called the free-space Green function defined as,  

           
 

 
  

     |   |                                                  (3) 

The function   
     |   |  denotes the Hankel function of the first kind and zeroth order [6], and 

|   | is the distance between the source r and the observation point q.  

1.1 Derivation of the first kind Fredholm BIE for the Helmholtz equation  

To derive the BIEs, one needs to multiply equation (1) and (2) by            and      

respectively. Then subtract the two resulting equations, and integrate over the region D with an 

area element    , to obtain  

  

∬ [           
            

          ]    ∬      
  

                       

                     

For the left hand side (LHS) of equation (4), one needs to make use of the Green second identity 

[1] and the integral on the right hand side (RHS) depends on the position of r, and can be classified 

as the following, 

∫ (         
 

   
         

 

   
         )

  

   

{
 
 

 
 

                     

 

 
                   

                             

           

                 

where  ⃗   denotes the outward unit normal vector at the boundary point q. The operator 
 

   
 denotes 

the directional derivative along the normal vector  ⃗   at the boundary element q, that is,   

 

   
          ⃗               

The dot denotes the scalar product,   is the gradient operator with respect to q, and dq is the arc 

length element along the boundary   . The direct substitution of DBCs, and letting        in 

equation (5) leads to the following BIE, 

 

∫          

  

 

   
                                                     

This BIE is classified as Fredholm integral equation of the first kind, because the unknown 

function 
 

   
      appears only implicitly, that is under the integration sign. Note that, this BIE 
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has a logarithmically divergent kernel (weakly-singular) at    . Actually, we can proceed with 

the BIE (6) after a careful treatment of the weak-singularity of           . But a well-known trick 

[7, 8] to avoid this additional complication is to take the normal derivative of the BIE (5) with 

respect to r in the limit          transforming all    terms to       ⁄  terms as shown next. 

 

1.2 Derivation of the second kind Fredholm BIE for the Helmholtz equation  

 Since r is an interior point, we may generally differentiate beneath the integral sign. That is 

applying the operator   ⃗        on equation (5) to obtain 

   
   

 

   
                                     

           
   

∫ (
 

   
         

 

   
         

 

   

 

   
         )

  

                    

 

 

Now the interior field point is positioned into the boundary        in equation (7). This 

should not present any restrictions or difficulties and all the integrals remain well behaved as long 

as the source point is located far away from . Imposing DBCs in equation (7) leads to,  

   
   

 

   
        

   
∫

 

   
         

 

   
    

  

                                  

                          

The RHS of equation (8) known in potential theory as the double layer potential, and there is a 

special relation for its limit to the boundary [4]. That is the kernel     
   

 

   
           has a jump 

when r tends to the boundary. Therefore, when formulating the BIEs, it is necessary to consider 

the discontinuity properties for the layer potentials [4, 7]. Take the limit        and apply the 

jump condition [4] for equation (8), one obtains,  

 

      ∫     
 

   
           

  

             
 

   
                                 

,                                        

This is a Fredholm equation of the second kind and its kernel is given as,  

 

 

   
          

  

 
           

     |   |  

,                                (10) 

and  
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       ⃗⃗ 

|   |
                     |   |                                  (11) 

where        is the angle between the normal at the boundary point  and the chord connecting 

the initial boundary point q to the final boundary point. For a very small argument of the Hankel 

function   
    in the limit    , one can use the following asymptotic expansion of the Hankel 

function as, 

 

  
     |   |  

   

  |   |
                  |   |     

This asymptotic expansion of   
   

 has a singularity of the order  (
 

 
) Nevertheless, such 

singularity is cancelled out by the geometric factor          . For a curved boundary, the term 

          is obtained as, 

          
 

 
 |   |                    |   |     

where   is the boundary curvature, for a circle boundary, the curvature is the reciprocal of its 

radius. Thus for curved boundary, the kernel in equation (9) becomes  

          
 

   
           

                                        
  

 
           

     |   |   

 
 

  
         |   |                                                                                       

One needs to make use of the following property of the delta function,  

     ∫             
 

  
 .                                                                      (12) 

So, the BIE (10) can be rewritten as,  

 

∫ [        
 

   
         ]

  

                                              

 

where the boundary elements q and   will be suppressed thereafter. This is a homogenous 

Fredholm integral equation of the second kind. After discretizing the boundary, equation (13) can 

be evaluated numerically to obtain a system of algebraic equations,  

        . 

Also we obtain the quantization condition as, 

 

   [          ]                                                   (14) 
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The values of k which satisfy equation (14) are the eigenvalues. The notation I denotes the identity 

matrix and          is the boundary integral kernel defined for the boundary elements q and . 

Since the matrix        is antisymmetric and fully populated with non-zero coefficients, direct 

solvers such as Gaussian elimination should be used. 

 

2.  Discussion on the advantages of the normal derivative method.  

 

Here we discuss the preference of using the second kind Fredholm equation over the first kind 

Fredholm equation for a unit disc. In principle, the Fredholm equation of first and second kinsd 

both are well adopted for numerical calculations [2]. An ill-conditioning problem is usually 

associated with Fredholm equations of the first kind, however this does not arise here. Because the 

presence of singularity of the kerenel ensures diagonal dominance in the system matrix, so the 

problem will be well-conditioned [2, 9]. The first advantage is that the BIE (6) leads to a 

symmetric matrix which is easy to handle, due to the symmetry property of the free-space Green 

function, whereas the BIE (9) leads to a non- symmetric matrix due to the term     . 

 In the absence of absorbtion (real vlaues of the wavenumber  ), the Green function must be real-

valued as understood from equation (1) that the Laplace operator   and the delta function     

   are both real quantities. Therfore, only the real part of the Green function is contributed to the 

solution. The imaginary part of the boundary function   must vanish or be very small. This fact 

will be used in varyfying our numerical computations of the boundary functions. Here we compare 

the accuracy of the boundary function   computed from both BIEs for a unit disc with DBCs. 

Respectively, figure 1 and figure 2 show plots of the real and imaginary parts of the boundary 

functions   , computed using both the original BIE (6) and the normal derivative BIE (9). Figure 1 

shows that the real part of the boundary function       computed using the original BIE (6) 

coincides very well with        computed using the normal derivative BIE (9). As the imaginary 

part of   gives the measure of the error, figure 2 shows that the normal derivative BIE (9) gives 

more accurate solution than the original BIE (6). Thus, we observe that the normal derivative BIE 

(9) is more efficient than the original BIE (6).  

Furthermore, the quantization condition obtained from the first kind BIE (6) is not numerically 

stable and becomes exponenetially small as one increases the number of boundary elements. For 

instance, for 200 boundary elements the values of the determinant (14) are smaller than the 

machine underflow threshhold. Whereas the second kind Fredholm BIE (9) works efficiently for 

computing the spectrum. Table 1 shows  the first ten of the sequence of the eigenvalues of a unit 

disc with DBCs which are the zeros of the quantization condition (14). These vlaues coincide very 

well with the analytic eigenvalues (zeros of Bessel functions) as tabulated in [6]. 
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Table 1: The eigenvalues of the unit disc with DBCs within the k range [50.1, 51] 

i Eigenvalues 

1 50.2453 

2 50.5681 

3 50.5836 

4 50.6610 

5 50.6782 

6 50.8071 

7 50.8438 

8 50.9306 

9 50.9377 

10 50.9650 

 

 
 

Figure 1 Re( ) for a unit disc with DBCs for k=50 and 2000 boundary elements 

 



Advantages of the normal derivative….. 

Vol. 9(1),  44-53,  June   2019 45 

 

 

 
Figure 2 Im(μ) for a unit disc with DBCs for k=50 and 2000 boundary elements 

 

3 The BEM formulation for the Green function 

In this section we present the derivation of the Green function   which satisfies both the 

Helmholtz equation and the prescribed boundary conditions. Note that the free-space Green 

function    is a solution of the Helmholtz equation but does not fulfil the prescribed boundary 

conditions. Since both of the Green functions   and    satisfy the Helmholtz equation (1), one has  

 

             ́           ́  ,                                                     (15) 

and 

                          .                                            (16) 

 

The wave-number k is defined as 

  
 

 
                 √                                                           

where   is the angular frequency, the constants   and   represent respectively the wave velocity 

and the damping parameter of the system. Conceptually, the derivation of the Green function is 

similar to the derivation of the quantization condition (14). We begin by multiplying equation (15) 

and (16) by           and      ́   , respectively, and taking the difference. Then we integrate 

the resulting equation over the domain D. Finally applying the Green second identity [1] and the 

prescribed DBCs to end up with this equation, 

   

     ́        ́  ∫          
  

     ́                                       

where 
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     ́  
 

   
     ́     

 

The Green function at any interior point   for a given source point  ́ can be computed using 

equation (18). The term       ́  in equation (18) represents the direct contribution of rays starting 

at the source  ́ and reaching a receiver point   without any reflection from the boundary. The 

second term in equation (18) is called the single layer potential or the elementary potential with 

density      ́  [4]. Such a term represents the indirect contribution of rays which reach a receiver 

point after hitting the boundary at least once. Conceptually, it represents the correction to the free-

space Green function to construct the full Green function with all reflections and propagation. The 

BEM analysis can be performed to find all the boundary unknowns and then in a post-processing 

procedures, by positioning the source point  ́ at the point of interest. The Green function can be 

calculated at any interior point by a numerical quadrature for the non-singular integrals in equation 

(18) using the boundary function      ́ . 

 

4.  Conclusions 

 

To summarize for a smooth boundary such as a disc, the normal derivative equation (9) works 

more efficiently than the original BIE (6). Built on this observation, we argue that the second kind 

integral equation (9) is more stable than the first kind integral equation (6). Also, we argue that the 

singularity of the free Green function    in the BIE (6) is responsible for the inaccuracy in 

computing the boundary functions and unstability issue encountered in computing the spectrum. 

However, for non-smooth geometries (edges and corners), the normal is not defined (not unique) at 

the corners. Hence corner corrections need to be considered as it may affect the accuracy [2]. 

Therefore the normal derivative method for  non-smooth geometries is spoiled by the corners 

problem. 
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