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   Abstract Linear barycentric rational interpolant are a specific type of rational interpolants, defined by weight independent of function. These interpolants have  recently been a valuable alternative to more classical methods of interpolation.  Rational interpolation gives a much better approximation than  polynomial, but it is difficult to avoid poles and unattainable points.                                                                                                                       In this paper , discuss the use of rational interpolation development, then we try to introduce another barycentric rational interpolant that provides a good result.  
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1. Introduction  The Polynomial interpolation is the dominant for approximation and has some clear advantages. For instance, any continuous function on a given interval [a, b] can be approximated by polynomials (Weierstrass). But there are some disadvantages, as a high polynomial degree is generally needed for accuracy, which in some cases leads to divergence. The rational interpolation is a promising alternative which can lead to better results in some cases. The presence of undesired poles and unattainable points near or inside of the interpolation interval can render it useless in such cases [7]. Barycentric rational interpolation as presented by Berrut and Mittelmann  possesses many advantages over the  classical rational interpolation. They showed that every rational interpolant may be written in the barycentric form.  Floater and Horman also constructed the rational interpolant by blending polynomial interpolants and defined an explicit formula for weights [10]. The barycentric 
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Vol.10(2), 98–112,December2020 99    form of rational interpolants has many advantages over the polynomial one.  In particular, it allows for an easier detection of unattainable points and of poles in the interval of interpolation. Let ��������  be � + 1	 be an  interpolation points in �a, b�, where  � ≤ �� <	�� <	… < �� ≤ �.	  The interpolation of the Lagrange polynomial 	can be defined by the formula�7�	p+,x. = 	0f1x23L4+2�� ,x., L4,x. = 	5 x − x7	x2 −	x7+7��782 								,1a. Where   L4,x7. = 91						if		j = k0			if				j ≠ k. The formula of Lagrange interpolation is useful for theoretical purposes,  but in practice it is not     appropriate [7]. Let  					L,x. = 	5,x − x7. 	→ 	 L?1x23 	= 	51x2 − x73.											+7��782 													+7��  Hence L4,x. = 	 L,x.L?1x231x −	x23.																					 If the weight is defined by w2 =	 1∏ 1x2 − x73+7�� =	 1L?1x23 then  BC,�. can be written as L4,x. = L,x. w21x −	x23	. The modified formula for Lagrange is therefore defined as: p+,x. = 	L,x.	0f2+2�� 		 w21x −	x23																				,1b.																											 If we interpolate   D� = 1   for all  j is the unique polynomial		E�,�. = 1, which has zero degree. Hence, this implies that                                                                                                                                         
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Vol.10(2), 98–112 ,December2020 100   1 = 	0L4+2�� ,x. = 	L,x.	0 w21x −	x23+2�� 																							 So                                                                                                                                                           L,x. = 	 1∑ GH1IJ	IH3+2�� . Therefore p,x. = 	∑ 		f2 GHI	J	IH+2��∑ GHI	J	IH+2�� 	,											,2. This is known as the barycentric formula. It is a polynomial if the weights  w2 are nonzero and defined in a such a way that  0L2+2�� = 	L,x.	0 w21x −	x23+2�� = 1. In 2004, Berrut and Trefethen discussed  the formula. Since then for interpolation, the formula  has been commonly known and used [7].   
2. Classical Rational Interpolation  Let  �������L  be distinct points and f(x) a given function. Let the polynomials p(x) of degree ≤ M and q(x) of degree ≤ �, be the numerator and the denominator, respectively, where  rN+ = p,x.q,x. = 	∑ a7	x7N7��∑ b7	x7+7�� ………………………,3. The rational interpolation interpolation problem is to find r(x) which satisfies the following condition [7] r1x23 = 	p1x23q1x23 = f1x23, j = 0,… ,m + n…… . ,4. If r exists, the solution is unique and can be written as a barycentric formula. The condition for (4) to be satisfied is  q1x23f1x23 − 	p1x23 = 0…………………,5. 
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Vol.10(2), 98–112,December2020 101    Which is  a�x2 +	…+	aN	x2N	 −	f2	1a�x2 +⋯+	aN	x2N	3 = 0 This is equivalent to a system of homogeneous equations, with ,M + 1.		unknown coefficients  in  E,�.	and   ,� + 1. in T,�.[8]. The system has at least one nonzero solution,  where 	U = � +M	, and 	 � ≤ M		without loss of generality, we have M ≥ LW. It is well known that a polynomial interpolation of degree ≤ �		exists and is unique. In classical rational interpolation, the condition � + M = U	is analogous to the condition DT − E = 0	for finit	D and	D = 	∞ for 	T = 0 	. However, the rational interpolation does not always have a solution because of two major obstacles [3, 5 ]: 

• In some cases the interpolation condition Y1��3 = D1��3 may not be achieved because of the occurrence of unattainable points. That is, there is a point x2 where the given function value D2 may not be obtained. This points ��  is called unattainable and occurs if �� is a zero of the denominator T�,�.  and the numerator EZ,�.. 
• Rational interpolant may have poles in the interval of interpolation, which are zeros of T�,�.that are not common to EZ,�.. Theses poles cause a problem if they are inside the interval of interpolation. Rational interpolation is useless if the function to be approximated is not singulat at the same points. 

Example 1.1:  Let � =1		  and 	� = 3	are unattainable points:  The corresponding solution           M = � = 2	 is   R(x) = W	I[J	\I]^		I[J	_I]`  = W	,IJ�.,IJ`.,IJ�.,IJ`. = 2.  The points		� = 1	and � =3  are unattainable points: aW,W  is �� at � = 1  and � = 3  and has the common factor 	,� − 1.,� − 3., but D = 2.  After cancellation ,	� −	��., Y,��.  may be not equal to D,��.. 
Example 1.2:  Let �� = −1, �� = 1	, �W = 2	and D� = 2, D� = 3, DW = 3 . if we take n=m=1, then a,�. = `b]`b]� = 3. The denominator is equal to zero at  x� = −1 and soa,��. = 3 ≠ 2 = D� . 
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Remark: Consider unattainable point x2 for a non—trivial solution				cd 	 ∈ a�,Z , where 	E = T = 0	   after the cancellation of  � −	�� 	 in  	cd	, we have  cfdf 	≠ D�  [16].  
 
3. Barycentric Rational Interpolation`  If the weights w2 are nonzero and defined in such way that B,�. = 	∑ gfb	J	bf����  is not equal to 1, then the formula ,2. is rational. To show that the rational interpolates the function, the following lemma is proved: 

Lemma: Let  f2 be the value of the function at 		��, where j=0…,n with �� ≠ �h for	i ≠ j. Then if uh	8�, the rational function   r,x. = 	∑ 		f2 kHI	J	IH+2��∑ kHI	J	IH+2�� 	,									,6. Interpolates Dh  at	�h  	 and   mnMb→bo Y,�. = 	Dp. Conversely, any rational interpolant function Y ∈ Y�� of 	D� can be written in barycentric form using some weights [3]. 
Proof:  Multiplying (6) by q,b.q,b.  r,x. = 	∑ 		f2 kHI	J	IH+2��∑ kHI	J	IH+2�� 	∏ ,x − x7.+7��∏ ,x − x7.+7��  = ∑ 		GH	rH 	∏ ,IJIs.tsuvtHuv∑ GHtHuv 	∏ ,IJIs.tsuv .  
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Vol.10(2), 98–112,December2020 103    By taking the limit mnMb→bo Y,�., we have  r,xw. = 	∑ 		w2	f2 	∏ ,xw − x7.+7��+2��∑ w2+2�� 	∏ ,xw − x7.+7�� =	 f2. The interpolation condition are satisfied as long as the interpolation points are distinct and  x�  are not equal to zero. From the Lagrange formula   p,x. = 	0f2		L2,x.,+2��  The numerator p and the denominator q could be written as  r,x. = 	p,x.q,x. = 	L,x.∑ y1IH31IJ	IH3z{1IH3+2��L,x.∑ |1IH31IJ	IH3z{1IH3+2��  Let  Y1��3 = 	 c1bf3d1bf3 = D� 	, where Y1��3	T1��3 = 	D1��3 . Then we have  r,x. = 	∑ f2 	 |1IH31IJ	IH3z{1IH3+2��∑ |1IH3GH1IJ	IH3z{1IH3+2��  By defining the weights }� =	 d1bf3q{1bf3 =	x�	T� ,	 we arrive at  r,x. = 	∑ 		f2 kHI	J	IH+2��∑ kHI	J	IH+2�� 	, If q(x) = 1, then T� = 1 for j=0,…,n  and so (6) reduces to the barycentric form of the interpolating polynomial of degree n.  
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Vol.10(2), 98–112 ,December2020 104   Berrut in [5] showed that if we use x� = ,−1.� , then the interpolant has no poles in R, where   r,x. = 	∑ 		f2 ,J�.HI	J	IH+2��∑ ,J�.HI	J	IH+2�� 	 , …………,8. The advantages of rational interpolation over polynomials interpolation at equally spaced points investigated by many studies such in [3, 5, 7].  If we interpolate Runge’s function, then the oscillation vanishes. Rational interpolation using Chebyshev points may yield worse results than using equally spaced points.  It is clear that barycentric rational interpolation allows one to choose the points and the weights.   The rational interpolation can be written in barycentric form, where }� = x�T�  is the weight corresponding to the points ��. Hence, the barycentric form has the advantage that the barycentric weights give information about possible unattainable points. The problem is how to choose the x� to avoid poles and produce a good approximation.                                                                                It is hard to approximate functions with poles, but in general points they do not lead to a good approximation. For example, the weights of  	x� = �∏ 1bfJb�3��uv   avoid poles. However, the determination  of the weight }�  is more complicated, which can be distinguished in specific ways:  
Choosing the degree: This can be done by fixing the exact degree of the numerator and denominator of (6). By choosing the numerator of degree ≤ M and the denominator of degree ≤ �, with � + M + 1 = U, such as  r,x. = 	∑ 		f2 kHI	J	IH+2��∑ kHI	J	IH+2�� =	∑ a2x2N�∑ b2x2+�  The ��, �� and }�  are unknown. The method has been studied in [ 3, 14, 16, 22 ]. 
Choosing the poles: This can be found by solving 
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Vol.10(2), 98–112,December2020 105    0 u2x −	x2+2�� . If some of the poles are known, it is possible to attach them to the barycentric rational interpolant. These methods have been treated in [4]. In [3, 14, 16, 22], they have used a different basis to present T� and ELJ� and derive a homogeneous system of linear equations in barycentric form. Schneider and Werner in [16] presented the rational interpolant in barycentric form with � + 1	 weights. They expressed T� and ELJ� by using Lagrange basis:                                                                                                             p,x. = 	0u2f2+2�� 5,x− x7.,				+7��  q,x. = 	0u2+2�� 5,x− x7.,				+7��  They suggested computing the weights by expressing the denominator T,�. in a Newton basis  q,x. = 	0w2+2�� 5,x− x7.,				2J�7��  Then, by an algorithm of Werner in [19 ] unknown weights uj are found by computing q(x) at  � =�� , which is u2 =	 q1x23∏ ,x − x7.,				+7��  The solution presented in [16 ] depends on the coefficients x�, 0 ≤ j ≤ �, � ≤ M − U − � and solving the homogeneous linear system.  f�x�, … , xN]��w� +⋯+ f�x+, … xN]��w+ = 0 f�x�, … , xN]W�w� +⋯+ f�x+, … xN]W�w+ = 0 
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Vol.10(2), 98–112 ,December2020 106   ⋮ f�x�, …… , x��w� +⋯+ f�x+, …… x��w+ = 0 Then the barycentric form q+, can be expressed as  q+,x. = 	5,x − x7.	0 w2x −	x2+2�� 		q2,		+7��  w2 =	 1	∏ ,xw − x7.+7�� . For the resulting linear system, the matrix of coefficients is a divided difference. A direct method due to Berrut and Mittelmann for finding the corresponding weights u2 can be found in [3]. Using monomial basis functions, conditions for the weights are derived such that  Y�,�. = cd, where the degree of p and T are M and �, respectively. A very similar approach is due to Zhu in [22 ] and Polezzi in [15] who directly determined function values T� of a denominator of degree at most n from the same degree condition. Schneider and Werner in [16] proposition  stated that:   

Proposition: [ 4, 16] If the rational interpolant r has no poles, then   w2	. w2]�	 < 0,			j = 0,… , N. This condition is necessary, but is not sufficient. A sufficient is still an open problem, despite some effort has been made. 
Example 1.3:  Let x=[-1, 0, 1] and u=[ 1, -1, 6] where n=2. The alternating the sign }� , j=0, 1, 2 implies the absence of poles.  
Example 1.4: For x=[1, 1,5, 3] and w=[ 1, 1, 1] where n=2, D�=1, 0.7, 1.7, the function YW,�. has poles. 
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Vol.10(2), 98–112,December2020 107    Example 1.5:  For x=[1, 1,5, 3] and w=[ 1, -1, 1] where n=2, D�=1, 0.7, 1.7, the function YW,�. does not have the poles. A sufficient condition is that the u2 are similar enough in in sizes for the  �fbJ	bf to decrease in absolute value on both size for each x [5, Lemma2.1]. 

Proposition:  [3, 16 ] If for some j,  w2	. w2]�	 > 0,			j = 0,… , N. Then r has an odd number of poles in [x2, x2]��.  

Remark: We can note that u2 in a rational presentation oscillates in sign, because the equation    u2 =	w2q2, Implies that w2 oscillate in sign but q2 does not.  An implicit form of (6) can be written as  0u2+2�� r+,x. −	 f2x − x2 = 0  
4. Floater and Horman interpolant  An attractive rational interpolation method that has no poles is presented in [10] by Floater and Hormann. They constructed an interpolant by blending the polynomial interpolants. Consider n +1	 points x� < x�… . . < x+ with corresponding values f� < f�… . . < f+. Suppose that 0 ≤ d	 ≤ n. For j = 0,… , n − d, let p2 be  the polynomial of degree at most d that interpolates x2, … . . , x2]�. Then interpolant undertaken in [10]  is   R+,x. = 	∑ λ2,x.p2,x.+J�2��∑ λ2,x.+J�2�� ……… . ,9. 
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Vol.10(2), 98–112 ,December2020 108   λ2,x. = 	 ,−1.2	1x − x23… 1x − x2]�3 The interpolant (9) has no real poles for each d, and  has an approximation of order �,ℎ�]�. as ℎ → 0, where h is a maximum of the space between two adjacent points  h = max��2�+J�1x2]� − x23, for D,�. ∈ ∁�]W[a,b].  The formula (9) is expensive to evaluate, but if we multiply the numerator and denominator by B,�. we see that (9) is a rational function of degree at most n and � − �. So (9) can be written in the barycentric form (6). The weights for the barycentric form Y�,�. of (9)  are defined explicitly: u2 =	0,−1.2 1x2 −	x7 . This because the (9) has no poles and so its weights oscillate in sign [10]. The d gives rise to a whole family of interpolants with no poles and high approximation orders. In theory, the approximation error decrease as � increases. In practice, however due to finite precision arithmetic, the numerically computed approximation may not behave accordingly.  For moderate d, the interpolant (9) performs very well even for large n.                                                                                                      
5.   An Improved Floater and Hofmann Interpolant   The Floater and Hormann interpolation formula faces a problem in the cases where � = � or � = 0. In this case, the interpolant Y will be interpolating polynomials . The idea of the proposed formula is that instead of blending the polynomial interpolants, the rational interpolants will be blended. Therefore when  � = � or 0 the interpolant will be rational interpolations.                           
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Vol.10(2), 98–112,December2020 109    For 0 ≤ � ≤ �, let r2 be the barycentric rational interpolation that interpolates �� , … , ��]�. The interpolant undertaken based on Floater and Hormann is   R+,x. = 	∑ λ2,x.r2,x.+J�2��∑ λ2,x.+J�2�� ……………,10. λ2,x. = 	 ,−1.2	1x − x23… 1x − x2]�3…… .… ,11. The formula (10) has no poles and so its weights oscillate in sign. 

Theorem: Let �������L  be U + 1 distinct points. Then the rational interpolant defined by (10) satisfies the interpolation condition Y,�h. = D,�h., i = 0, 1, … ,U. 
Proof: By multiplying the numerator and denominator by  ,−1.�J� ,� − ��. …,� − ��., we have  r+,x. = 	∑   ,−1.+J� ,x − x�. ...,x − x+.λ2,x.r2,x.+J�2��∑ 	,−1.+J�  ,x − x�. …  ,x − x+.	λ2,x.+J�2��  Letting μ2,x. =   ,−1.+J� ,x − x�. …  ,x − x+.λ2,x., then  limI→Is r,x. =	 ∑ μ2,x.r2,x.+J�2��∑ μ2,x.+J�2��  We know from Lemma 1.5 the rational function satisfies  limI→Is 	r,x7. = f,x7.. Then  r,x7. = 	∑ 	,−1.+J�μ2,x7.f,x7.+J�2��∑ 	,−1.+J�μ2,x7.+J�2��		 	= 	f,x7.. 
Theorem: Let the function  D ∈ ∁�]W��, ��, the rational Y�,�. is obtained by (10 ), then when � −� is odd, we have 
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Vol.10(2), 98–112 ,December2020 110   ‖f,x. −	R+,x.‖ ≤ h�]�	,1 + β.,b − a. �f�]W�d + 2 , And if � − � is even  ‖f,x. −	R+,x.‖ ≤ h�]�,1 + β.,b − a. ��f�]W�d + 2 +	�f�]��d + 1 �, h = max����+J�,x�]� − x�.. β = max����+J�min 9x�]� −	x�x�−	x�J� , x�]� −	x�x�]W−	x�]�	� 
Proof: We start as in [11] for x which is an interpolation points, the error will be zero. And for x is not an interpolation points, the error can be presented as:  ‖f,x. −	r+,x.‖ = 	 �∑ ,J�.H1IJ	IH3….1IJ	IH��3	 1f,x. −	r2,x.3+J�2�� ∑ ,J�.H1IJ	IH3….1IJ	IH��3	+J�2�� �         …………   (12) Using   �f −	p+q+� ≤ maxI∈��,���|,f	qN.+]�,x.|,n + 1.! � maxI∈��,��∏ |x − x7|+7��|qN,x.| . In [10], we have  μ�,x. = ,−1.+J� ,x −	x�.… . ,x −	x+. λ�,x.,  λ�,x. = μ�,x.,−1.+J�	,x −	x�.… . ,x −	x+.. Then, we can see that, the numerator and the denominator of (12) is multiplied by ,−1.�J� ,� −	��.… . ,� −	��., which is independent of i	. From [10], we have  
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Vol.10(2), 98–112,December2020 111    0μ�+J���� ,x. > 0.	 Now, from (12), we can see  the error D,�. −	Y�,�. that related to the formula (8). Therefore, we have the above.  To prove the case when � − �  is even, we follow the similar procedure of an odd  � − �.    
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