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Abstract 

It is know that many problems in physics, in the study of chemically  reacting systems, in celestial mechanics 

and in other fields of science can be modelled by second order nonlinear differential equations. Therefore, the 

asymptotic and oscillatory properties of solutions of such equations have been investigated by many authors. In 

this paper our aim is to present some new sufficient conditions for the oscillation of all solutions of the 

nonlinear differential equations  of the form
 

                             
  0))(,()())(()( 1 


txtgtxtxtr                                       (1) 

Our new results extend and improve a number of existing oscillation criteria. Further, Our main results are 

illustrated with examples. 
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1. Introduction 
 

The study of the oscillation of second – order nonlinear ordinary differential equations with 

alternating coefficients is of special interest because many physical system are modelled by  

second – order nonlinear ordinary differential equations, for example, the so – called Emden - 

Fowler equation arises in the study of gas dynamics and fluid mechanics. This equation  appears  

also in the study of relativistic mechanics and in the study of certain chemical reactions. 
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The problem of determining oscillation criteria for second – order nonlinear differential   equations  

has received  a great deal of attention in the twenty years after the publication of the  classic paper 

by Atkinson [1].  

Many authors use some different  techniques in studying the oscillatory behaviour of the  second 

order differential equations, especially, what so – called averaging techniques that  dates back to 

works of Wintner [15] and its generalization by Hartman [8].     

Investigation of the differential equation (1) in this paper is motivated by the paper [3], where 

some of the conditions required in the theorems contain the unknown solution  . It seems that any 

verification of such conditions is questionable and may be impossible. The purpose of the paper is 

to remove the above mentioned conditions that depend on solution and improve some results 

presented in [3] in this way. The relevance of theorems in the text is illustrated by included 

examples. In the last time increases the number of papers which involve oscillatory criteria based 

on the idea of using of the parameter functions ),( stH  (see e.g. [9-11] ). These results have great 

theoretical value but they are less effective in applications. On the other hand, the results which 

contain the requirements only on the functions occurring in differential equation are usually better 

applicable. The paper contains only results of the latter kind. 

        In this paper we shall study the oscillatory behaviour of the solution of the differential 

equation of the form   

                                      0))(,()())(()( 1 


txtgtxtxtr                                                 (1)  

Where r  is a positive continuous function on the interval ,0,),[ 00  tt  is a positive  

continuous function on the real line R and 1g  is a continuous function on RR  , with        

0),(
))((

))(,(1  xallfortq
txg

txtg
 and  ),,[ 0  tt  where  g  is continuously differentiable function 

on the real line  R  except  possible  at  0 with 0)( xxg , 00)(  xallforlxg  and q is a 

continuous functions on the  interval
  

0,),[ 00  tt  .     

        Throughout this paper we restrict our attention only to the solution of the differential  

equation (1) which exists on some interval 0,),[ 00  tt may depend  on  a  particular  solution. 
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        In the present section we shall state and prove some sufficient oscillation criteria of the  

solutions of the equation (1). 

 

2. Main Results: 

 

Theorem 2.1:  Suppose  that 
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        Then  equation (1) is  oscillatory. 

Proof.  Let  )(tx   be  a  non-oscillatory  solution  of  the  differential  equation  (1 )  and  that  
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From  the  condition  ( 1O ) , for  all  ,2Tt  we  obtain 
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Then,  for  ,2Tt   we  have 
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It is clear that for ],[ 20 Ttt  it holds 
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Combining (6) and (7) it follows that 
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This  contradicts  to  the  condition  ( 3O );  hence,  the  proof  is  completed. 

Example 2.1: Consider the equation 
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By theorem  2.1, every solution of  equation (8) oscillates. 

Remark 2.1:  Theorem 2.1 extends the results of  E. M.Elabbasy and Sh. R. Elzeiny [2] and 

Ohriska  and  A.Zulova  [12].  

Theorem 2.2:  Suppose  that  ( 1O )  holds.  And  furthermore  let  for  some  integer  2n  
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Using the inequality (10) we get for  0tt    
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Now  if  we  divide  (11)  by  
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This  contradicts  to  the  condition  ( 4O  ) ;  hence,  the  proof  is  completed. 

Example 2.2:  Consider the equation 
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And for any integer  2n ,  we  have
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It  follows  from  theorem  2.2  that  given every solution of  equation (12)  is  oscillates.  

Remark 2.2:  Theorem 2.2  extends  the  results  of  Ohriska  and  A.Zulova  [12]. 

Theorem 2.3 :  Suppose  that 
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And   31 llc   is  a  positive  constant, 

Moreover  (14)  implies  that  for  ,1Tt   we  have 
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Since this last inequality  contradicts  the  condition  ( 6O ), the  proof  is  completed. 
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It  follows  from  theorem  2.3  that  the  given  equation (16)  is  oscillatory. 

Remark 2.3:  Theorem 2.3 extends the results of A.Tiryaki  and  A.Zafar  [14], S. R. Grace [5] 

and CH. G. Philos [15].  
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Then , for  all  ,02 tT   we  have 
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Now  if  we  divide  (18)  by ,),( 0ttH  take  the  upper  limit  as  ,t and  apply ( 7O ), we  

obtain 
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This  contradicts  to  the  condition  ( 8O ); hence,  the  proof  is  completed. 

Example 2.4:  Consider the equation  
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We  note  that 
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It  follows from  Theorem  2.4  that  the  given  equation  (19)  is  oscillatory. 

Remark 2.4  Theorem 2.4 extends the results of Grace [6] , [7] ,  Ohriska  and  A.Zulova  [12] and  

A.Tiryaki  and  A.Zafar  [14].      
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