Oscillations Of Solutions For Nonlinear Differential Equations

Jaffalah J. Amhalhil
e-mail: jaffalah.ali@su.edu.ly
Sirte University, School of Mathematical Sciences, Faculty of Education.

Abstract

It is know that many problems in physics, in the study of chemically reacting systems, in celestial mechanics and in other fields of science can be modelled by second order nonlinear differential equations. Therefore, the asymptotic and oscillatory properties of solutions of such equations have been investigated by many authors. In this paper our aim is to present some new sufficient conditions for the oscillation of all solutions of the nonlinear differential equations of the form $$
\begin{equation*} (r(t) \psi(x(t)) \dot{x}(t))^{\bullet}+g_{1}(t, x(t))=0 \tag{1} \end{equation*}
$$

Our new results extend and improve a number of existing oscillation criteria. Further, Our main results are illustrated with examples.

Keywords: Oscillation criteria, ordinary differential equations, Second order, Nonlinear

1. Introduction

The study of the oscillation of second - order nonlinear ordinary differential equations with alternating coefficients is of special interest because many physical system are modelled by second - order nonlinear ordinary differential equations, for example, the so - called Emden Fowler equation arises in the study of gas dynamics and fluid mechanics. This equation appears also in the study of relativistic mechanics and in the study of certain chemical reactions.

The problem of determining oscillation criteria for second - order nonlinear differential equations has received a great deal of attention in the twenty years after the publication of the classic paper by Atkinson [1].

Many authors use some different techniques in studying the oscillatory behaviour of the second order differential equations, especially, what so - called averaging techniques that dates back to works of Wintner [15] and its generalization by Hartman [8].

Investigation of the differential equation (1) in this paper is motivated by the paper [3], where some of the conditions required in the theorems contain the unknown solution. It seems that any verification of such conditions is questionable and may be impossible. The purpose of the paper is to remove the above mentioned conditions that depend on solution and improve some results presented in [3] in this way. The relevance of theorems in the text is illustrated by included examples. In the last time increases the number of papers which involve oscillatory criteria based on the idea of using of the parameter functions $H(t, s)$ (see e.g. [9-11]). These results have great theoretical value but they are less effective in applications. On the other hand, the results which contain the requirements only on the functions occurring in differential equation are usually better applicable. The paper contains only results of the latter kind.

In this paper we shall study the oscillatory behaviour of the solution of the differential equation of the form

$$
\begin{equation*}
(r(t) \psi(x(t)) \dot{x}(t))^{\bullet}+g_{1}(t, x(t))=0 \tag{1}
\end{equation*}
$$

Where r is a positive continuous function on the interval $\left[t_{0}, \infty\right), t_{0} \geq 0, \psi$ is a positive continuous function on the real line R and g_{1} is a continuous function on $R \times R$, with $\frac{g_{1}(t, x(t))}{g(x(t))} \geq q(t)$, for all $x \neq 0$ and $t \in\left[t_{0}, \infty\right)$, where g is continuously differentiable function on the real line R except possible at 0 with $x g(x)>0, g^{\prime}(x) \geq l>0$ for all $x \neq 0$ and q is a continuous functions on the interval $\left[t_{0}, \infty\right), t_{0} \geq 0$.

Throughout this paper we restrict our attention only to the solution of the differential equation (1) which exists on some interval $\left[t_{0}, \infty\right), t_{0} \geq 0$ may depend on a particular solution.

In the present section we shall state and prove some sufficient oscillation criteria of the solutions of the equation (1).

2. Main Results:

Theorem 2.1: Suppose that
$O_{1}: \frac{1}{\psi(x)} \geq l_{1}>0, \quad$ for all $x \in R$,
$O_{2}: \lim _{t \rightarrow \infty} \frac{1}{R(t)}=k_{1} \in[0, \infty)$, where $R(t)=\int_{t_{0}}^{t} \frac{d s}{r(s)}$ for $t>t_{0}$.

Furthermore, let for some integer $n \geq 3$
$O_{3}: \lim _{t \rightarrow \infty} \sup \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{t}[R(t)-R(s)]^{n-1} q(s) d s=\infty$,

Then equation (1) is oscillatory.

Proof. Let $x(t)$ be a non-oscillatory solution of the differential equation (1) and that $x(t) \neq 0$, for $t \geq T_{2} \geq t_{0}$,

Define $\quad \omega(t)=\frac{r(t) \psi(x(t)) \dot{x}(t)}{g(x(t))}, \quad t \geq T_{2}$,

Thus by (1) it follows that

$$
\begin{equation*}
\dot{\omega}(t)=\frac{-g_{1}(t, x(t))}{g(x(t))}-\frac{\omega^{2}(t) g^{\prime}(x(t))}{r(t) \psi(x(t))} \tag{3}
\end{equation*}
$$

From the condition $\left(O_{1}\right)$, for all $t \geq T_{2}$, we obtain

$$
\dot{\omega}(t) \leq q(t)-k \frac{\omega^{2}(t)}{r(t)}, \quad t \geq T_{2}, \text { where } k=l l_{1} \text { is a positive constant. }
$$

Hence, for every $t \geq T_{2}$, we have

$$
\begin{gather*}
\int_{T_{2}}^{t}[R(t)-R(s)]^{n-1} q(s) d s \leq-\int_{T_{2}}^{t}[R(t)-R(s)]^{n-1} \dot{\omega}(s) d s-k \int_{T_{2}}^{t}[R(t)-R(s)]^{n-1} \frac{\omega^{2}(s)}{r(s)} d s \\
\leq\left[R(t)-R\left(T_{2}\right)\right]^{n-1} \omega\left(T_{2}\right)-\int_{T_{2}}^{t} k[R(t)-R(s)]^{n-1} \frac{\omega^{2}(s)}{r(s)} d s \\
\quad-\int_{T_{2}}^{t}(n-1)[R(t)-R(s)]^{n-2} \frac{\omega(s)}{r(s)} d s \tag{4}\\
\leq\left[R(t)-R\left(T_{2}\right)\right]^{n-1} \omega\left(T_{2}\right)+\frac{(n-1)^{2}}{4 k} \int_{T_{2}}^{t} \frac{[R(t)-R(s)]^{n-3}}{r(s)} d s \\
\quad-\int_{T_{2}}^{t}\left\{\sqrt{\left.\frac{k[R(t)-R(s)]^{n-1}}{r(s)} \omega(s)+\frac{(n-1)}{2 \sqrt{k}} \sqrt{\frac{[R(t)-R(s)]^{n-3}}{r(s)}}\right\}^{2} d s,}\right.
\end{gather*}
$$

Then, for $t \geq T_{2}$, we have

$$
\begin{equation*}
\int_{T_{2}}^{t}[R(t)-R(s)]^{n-1} q(s) d s \leq\left[R(t)-R\left(T_{2}\right)\right]^{n-1} \omega\left(T_{2}\right)+\frac{(n-1)^{2}}{4 k(n-2)}\left[R(t)-R\left(T_{2}\right)\right]^{n-2} . \tag{5}
\end{equation*}
$$

Then we have

$$
\begin{align*}
& \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{t}[R(t)-R(s)]^{n-1} q(s) d s=\frac{1}{R^{n-1}(t)} \int_{t_{0}}^{T_{2}}[R(t)-R(s)]^{n-1} q(s) d s \\
&+\frac{1}{R^{n-1}(t)} \int_{T_{2}}^{t}[R(t)-R(s)]^{n-1} q(s) d s \\
& \leq \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{T_{2}} R^{n-1}(t) q(s) d s+\left(1-\frac{R\left(T_{2}\right)}{R(t)}\right)^{n-1} \omega\left(T_{2}\right)+\frac{(n-1)^{2}}{4 k(n-2) R(t)}\left(1-\frac{R\left(T_{2}\right)}{R(t)}\right)^{n-2}, \tag{6}
\end{align*}
$$

It is clear that for $t \in\left[t_{0}, T_{2}\right]$ it holds

$$
\begin{equation*}
\frac{1}{R^{n-1}(t)} \int_{t_{0}}^{T_{2}}[R(t)-R(s)]^{n-1} q(s) d s \leq \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{T_{2}} R^{n-1}(t) q(s) d s=\int_{t_{0}}^{T_{2}} q(s) d s \tag{7}
\end{equation*}
$$

Combining (6) and (7) it follows that

$$
\frac{1}{R^{n-1}(t)} \int_{t_{0}}^{t}[R(t)-R(s)]^{n-1} q(s) d s \leq\left[1-\frac{R\left(T_{2}\right)}{R(t)}\right]^{n-1} \omega\left(T_{2}\right)+\frac{(n-1)^{2}}{4 k(n-2) R(t)}\left[1-\frac{R\left(T_{2}\right)}{R(t)}\right]^{n-2}+\int_{t_{0}}^{T_{2}} q(s) d s
$$

It is clear that $\lim _{t \rightarrow \infty} \frac{1}{R(t)}=k_{1} \in[0, \infty)$, thus

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \sup \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{t}[R(t)-R(s)]^{n-1} q(s) d s & \leq\left[1-k_{1} R\left(T_{2}\right)\right]^{n-1} \omega\left(T_{2}\right) \\
& +\frac{k_{1}(n-1)^{2}}{4 k(n-2)}\left[1-k_{1} R\left(T_{2}\right)\right]^{n-2}+\int_{t_{0}}^{T_{2}} q(s) d s<\infty,
\end{aligned}
$$

This contradicts to the condition $\left(O_{3}\right)$; hence, the proof is completed.

Example 2.1: Consider the equation

$$
\begin{equation*}
\left[\left(\frac{1}{t}\right)\left(\frac{1+x^{4}(t)}{2+x^{4}(t)}\right) \dot{x}(t)\right]^{\bullet}+x^{3}(t)\left(1+x^{2}(t)\right)=0, t>0 \tag{8}
\end{equation*}
$$

Notice that
$r(t)=\frac{1}{t}>0 \quad \forall t \geq t_{0}>0 ; \psi(x)=\frac{1+x^{4}}{2+x^{4}}>0 \quad$ and $\quad \frac{1}{\psi(x)}=\frac{2+x^{4}}{1+x^{4}} \geq 1 \quad \forall x \in R$,
$\frac{g_{1}(t, x(t))}{g(x(t))}=\frac{x^{3}(t)\left(1+x^{2}(t)\right)}{x^{3}(t)}=1+x^{2}(t) \geq 1=q(t) \quad$ for all $x \neq 0$ and $t \in\left[t_{0}, \infty\right)$

$$
R(t)=\int_{t_{0}}^{t} \frac{d s}{r(s)}=\int_{t_{0}}^{t} s d s=\left.\frac{s^{2}}{2}\right|_{t_{0}} ^{t}=\frac{t^{2}}{2}-\frac{t_{0}^{2}}{2} \quad, \quad \text { for } t>0 \quad \text { and } \quad \lim _{t \rightarrow \infty} \frac{1}{R(t)}=0, t \in[0, \infty),
$$

Let $\mathrm{n}=3$, then

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{R^{n-1}(t)} \int_{t_{0}}^{t}[R(t)-R(s)]^{n-1} q(s) d s=\lim _{t \rightarrow \infty} \sup \frac{4}{\left(t^{2}-t_{0}^{2}\right)^{2}} \int_{t_{0}}^{t}\left[\frac{t^{2}}{2}-\frac{s^{2}}{2}\right]^{2} d s=\infty .
$$

By theorem 2.1, every solution of equation (8) oscillates.
Remark 2.1: Theorem 2.1 extends the results of E. M.Elabbasy and Sh. R. Elzeiny [2] and Ohriska and A.Zulova [12].

Theorem 2.2: Suppose that $\left(O_{1}\right)$ holds. And furthermore let for some integer $n \geq 2$

$$
O_{4}: \lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2}}{4 k_{2}}(t-s)^{n-2} r(s)\right] d s=\infty,
$$

Then equation (1) is oscillatory .
Proof. Let $x(t)$ be a non-oscillatory solution of equation (1) and that $x(t) \neq 0$ for $t \geq T_{3} \geq t_{0}$.

$$
\text { Define } \quad \omega(t)=\frac{r(t) \psi(x(t)) \dot{x}(t)}{g(x(t))}, \quad t \geq T_{3} \text {, }
$$

Then, for every $t \geq T_{3}$, we obtain

$$
\dot{\omega}(t) \leq-q(t)-k \frac{\omega^{2}(t)}{r(t)}, \quad t \geq T_{3}
$$

Hence, for every $t \geq T_{3}$, we get

$$
\left.\left.\begin{array}{rl}
\int_{T_{3}}^{t}(t-s)^{n} q(s) d s & \leq\left(t-T_{3}\right)^{n} \omega\left(T_{3}\right)
\end{array}\right)+\frac{n^{2}}{4 k} \int_{T_{3}}^{t}(t-s)^{n-2} r(s) d s\right)
$$

Then, for all $t \geq T_{3}$, we have

$$
\begin{align*}
\int_{T_{3}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2} r(s)}{4 k}(t-s)^{n-2}\right] d s \leq\left(t-T_{3}\right)^{n} & \omega\left(T_{3}\right) \tag{10}\\
& \leq\left(t-t_{0}\right)^{n} \omega\left(T_{3}\right), \quad t \geq T_{3}
\end{align*}
$$

Using the inequality (10) we get for $t \geq t_{0}$

$$
\begin{aligned}
\int_{t_{0}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2}}{4 k}(t-s)^{n-2} r(s)\right] d s & =\int_{t_{0}}^{T_{3}}\left[(t-s)^{n} q(s)-\frac{n^{2}}{4 k}(t-s)^{n-2} r(s)\right] d s \\
& +\int_{T_{3}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2}}{4 k}(t-s)^{n-2} r(s)\right] d s \\
& \leq \int_{t_{0}}^{T_{3}}(t-s)^{n} q(s) d s+\left(t-t_{0}\right)^{n} \omega\left(T_{3}\right)
\end{aligned}
$$

By the Bonnet theorem for a fixed $c_{s} \in\left\lfloor t_{0}, T_{3}\right\rfloor$ such that

$$
\int_{t_{0}}^{T_{3}}(t-s)^{n} q(s) d s=\left(t-t_{0}\right)^{n} \int_{t_{0}}^{c_{s}} q(s) d s
$$

Then, for $t \geq T_{3}$, we get

$$
\begin{equation*}
\int_{t_{0}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2} r(s)}{4 k}(t-s)^{n-2}\right] d s \leq\left(t-t_{0}\right)^{n} \int_{t_{0}}^{c_{s}} q(s) d s+\left(t-t_{0}\right)^{n} \omega\left(T_{3}\right) . \tag{11}
\end{equation*}
$$

Now if we divide (11) by t^{n} take the upper limit as $t \rightarrow \infty$, we get

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}\left[(t-s)^{n} q(s)-\frac{n^{2}}{4 k}(t-s)^{n-2} r(s)\right] d s<\infty .
$$

This contradicts to the condition $\left(O_{4}\right)$; hence, the proof is completed.

Example 2.2: Consider the equation

$$
\begin{equation*}
\left[\left(\frac{x^{2}(t)+2}{x^{2}(t)+4}\right) \dot{x}(t)\right]^{\bullet}+x(t)\left(1+x^{4}(t)\right)=0, t>0 \tag{12}
\end{equation*}
$$

Observe that

$$
\begin{aligned}
& r(t)=1>0, \quad t \geq t_{0}>0, \quad \psi(x)=\frac{x^{2}+2}{x^{2}+4}>0 \quad, \quad \text { and } \quad \frac{1}{\psi(x)}=\frac{x^{2}+4}{x^{2}+2} \geq 1 \quad, \forall x \in R, \\
& \frac{g_{1}(t, x(t))}{g(x(t))}=\frac{x(t)\left(1+x^{4}(t)\right)}{x(t)}=1+x^{4}(t) \geq 1=q(t) \quad, \quad \text { for } \quad x \neq 0 \quad \text { and } t \in\left[t_{0}, \infty\right),
\end{aligned}
$$

And for any integer $n \geq 2$, we have

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}\left[(t-s)^{n}-\frac{n^{2}}{4 k_{2}}(t-s)^{n-2} r(s)\right] d s=\lim _{t \rightarrow \infty} \sup \frac{1}{t^{n}} \int_{t_{0}}^{t}\left[(t-s)^{n}-\frac{n^{2}}{4}(t-s)^{n-2}\right] d s=\infty
$$

It follows from theorem 2.2 that given every solution of equation (12) is oscillates.
Remark 2.2: Theorem 2.2 extends the results of Ohriska and A.Zulova [12].

Theorem 2.3: Suppose that
$O_{5}: \quad 0<l_{2} \leq \psi(x(t)) \leq l_{3} \quad, \quad$ for all $x \in R$,

And moreover, assume that there exists a differentiable function

$$
\rho:\left[t_{0}, \infty\right) \rightarrow(0, \infty), \text { and the continuous functions } h, H: D \equiv\left\{(t, s): t \geq s \geq t_{0}\right\} \rightarrow R,
$$

Where H has a continuous and non-positive partial derivative on D with respect to the second variable such that $H(t, t)=0$, for $t \geq t_{0}, H(t, s)>0$, for $t>s \geq t_{0}$, and

$$
\frac{-\partial H(t, s)}{\partial s}=h(t, s) \sqrt{H(t, s)}, \quad \text { for all }(t, s) \in D
$$

$O_{6}: \lim _{t \rightarrow \infty} \sup \left[X\left(t, t_{0}\right)-\frac{1}{4 c_{1}} Y\left(t, t_{0}\right)\right]=\infty, \quad$ Where $\quad X\left(t, t_{0}\right)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s) q(s) d s$,

And $Y\left(t, t_{0}\right)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} r(s) \rho(s)\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2} d s$,

Then equation (1) is oscillatory.

Proof. Let $x(t)$ be a non-oscillatory solution of equation (1) and assume that $x(t)>0$ for all $t \geq T_{1} \geq t_{0}$.

$$
\begin{equation*}
\text { Define } \quad \omega(t)=\rho(t) \frac{r(t) \psi(x(t)) \dot{x}(t)}{g(x(t))}, t \geq T_{1} \text {, } \tag{13}
\end{equation*}
$$

Then, for every $t \geq T_{1}$, we obtain

$$
\dot{\omega}(t)=-\frac{\rho(t) g_{1}(t, x(t))}{g(x(t))}+\frac{\dot{\rho}(t) r(t) \psi(x(t)) \dot{x}(t)}{g(x(t))}-\frac{\rho(t) r(t) \psi(x(t)) \dot{x}^{2}(t) g^{\prime}(x(t))}{g^{2}(x(t))} .
$$

Therefore, for all $t \geq T_{1}$, we have

$$
\dot{\omega}(t) \leq-\rho(t) q(t)-\frac{1}{l_{3}}\left[\frac{l}{r(t) \rho(t)} \omega^{2}(t)+\gamma(t) \omega(t)\right], t \geq T_{1} \quad, \quad \text { where } \quad \gamma(t)=-\frac{l_{3} \dot{\rho}(t)}{\rho(t)} .
$$

Then, for all $t \geq T_{1} \geq t_{0}$, we obtain

$$
\begin{aligned}
& \int_{T_{1}}^{t} H(t, s) \rho(s) q(s) d s \leq-\int_{T_{1}}^{t} H(t, s) \dot{\omega}(s) d s-\frac{1}{l_{3}} \int_{T_{1}}^{t}\left[\frac{l H(t, s)}{r(s) \rho(s)} \omega^{2}(s)+\gamma(s) H(t, s) \omega(s)\right] d s . \\
& \therefore \int_{T_{1}}^{t} H(t, s) \rho(s) q(s) d s \leq\left[\left.H(t, s) \omega(s)\right|_{T_{1}} ^{t}-\int_{T_{1}}^{t} \frac{\partial H(t, s)}{\partial s} \omega(s) d s\right] \\
&-\frac{1}{l_{3}} \int_{T_{1}}^{t}\left[\frac{l H(t, s)}{r(s) \rho(s)} \omega^{2}(s)+\gamma(s) H(t, s) \omega(s)\right] d s
\end{aligned}
$$

Then, for $t \geq T_{1}$, we have

$$
\begin{align*}
& \begin{aligned}
\int_{T_{1}}^{t} H(t, s) \rho(s) q(s) d s \leq H\left(t, T_{1}\right) \omega\left(T_{1}\right) & -\int_{T_{1}}^{t} h(t, s) \sqrt{H(t, s)} \omega(s) d s \\
& \quad-\frac{1}{l_{3}} \int_{T_{1}}^{t}\left[\frac{l H(t, s)}{r(s) \rho(s)} \omega^{2}(s)+\gamma(s) H(t, s) \omega(s)\right] d s
\end{aligned} \\
& \begin{array}{r}
\leq H\left(t, T_{1}\right) \omega\left(T_{1}\right)-\frac{1}{l_{3}} \int_{T_{1}}^{t}\left\{\frac{l H(t, s)}{r(s) \rho(s)} \omega^{2}(s)+\left[l_{3} h(t, s) \sqrt{H(t, s)}+\gamma(s) H(t, s)\right] \omega(s)\right\} d s \\
\leq H\left(t, T_{1}\right) \omega\left(T_{1}\right)+\int_{T_{1}}^{t} \frac{r(s) \rho(s)}{4 l l_{3}}\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2} d s \\
\quad-\frac{1}{l_{3}} \int_{T_{1}}^{t}\left[\sqrt{\frac{l H(t, s)}{r(s) \rho(s)}} \omega(s)+\sqrt{\frac{r(s) \rho(s)}{4 l}}\left\langle l_{3} h(t, s)+\gamma(s) \sqrt{H(t, s)}\right\rangle\right]^{2} d s \\
\leq H\left(t, T_{1}\right)\left[\omega\left(T_{1}\right)-J\left(t, T_{1}\right)\right]+\int_{T_{1}}^{t} \frac{r(s) \rho(s)}{4 c_{1}}\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2} d s,
\end{array}
\end{align*}
$$

Where $\quad J\left(t, T_{1}\right)=\frac{1}{l_{3} H\left(t, T_{1}\right)} \int_{T_{1}}^{t}\left[\sqrt{\frac{l H(t, s)}{r(s) \rho(s)}} \omega(s)+\sqrt{\frac{r(s) \rho(s)}{4 l}}\left\langle l_{3} h(t, s)+\gamma(s) \sqrt{H(t, s)}\right\rangle\right]^{2} d s$

And $c_{1}=l l_{3}$ is a positive constant,

Moreover (14) implies that for $t \geq T_{1}$, we have

$$
\int_{T_{1}}^{t} H(t, s) \rho(s) q(s) d s-\frac{1}{4 c_{1}} \int_{T_{1}}^{t} r(s) \rho(s)\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2} d s \leq H\left(t, T_{1}\right) \omega\left(T_{1}\right),
$$

Then, for $t \geq T_{1}$, we get

$$
\begin{equation*}
\leq H\left(t, t_{0}\right)\left|\omega\left(T_{1}\right)\right|, \quad \text { for } T_{1} \geq t_{0} \tag{15}
\end{equation*}
$$

In view of (14) and (15) we can easily obtain that

$$
\begin{aligned}
H\left(t, t_{0}\right)\left[X\left(t, t_{0}\right)-\frac{1}{4 c_{1}} Y\left(t, t_{0}\right)\right] & =\int_{t_{0}}^{T_{1}}\left\{H(t, s) \rho(s) q(s)-\frac{r(s) \rho(s)}{4 c_{1}}\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2}\right\} d s \\
& +\int_{T_{1}}^{t}\left\{H(t, s) \rho(s) q(s)-\frac{r(s) \rho(s)}{4 c_{1}}\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2}\right\} d s \\
& \leq H\left(t, t_{0}\right) \int_{t_{0}}^{T_{1}}|\rho(s) q(s)| d s+H\left(t, t_{0}\right)\left|\omega\left(T_{1}\right)\right|,
\end{aligned}
$$

For $t \geq T_{1}$, and so we have

$$
\lim _{t \rightarrow \infty} \sup \left[X\left(t, t_{0}\right)-\frac{1}{4 c_{1}} Y\left(t, t_{0}\right)\right] \leq \int_{t_{0}}^{T_{1}}|\rho(s) q(s)| d s+\left|\omega\left(T_{1}\right)\right| .
$$

Since this last inequality contradicts the condition $\left(O_{6}\right)$, the proof is completed.

Example 2.3: Consider the equation

$$
\begin{equation*}
\left[t\left(6+\frac{x^{2}(t)}{1+x^{2}(t)}\right) \dot{x}(t)\right]^{\bullet}+x(t)\left(t^{2}+x^{4}(t)\right)=0, \quad t>0 \tag{16}
\end{equation*}
$$

We note that

$$
\begin{aligned}
& r(t)=t>0, \quad t \geq t_{0}>0, \quad 0<6 \leq \psi(x(t))=6+\frac{x^{2}}{1+x^{2}} \leq 7 \quad, \text { for all } x \in R \\
& \frac{g_{1}(t, x(t))}{g(x(t))}=\frac{x(t)\left(t^{2}+x^{4}(t)\right)}{x(t)}=t^{2}+x^{4}(t) \geq t^{2}=q(t) \quad \text { for } x \neq 0 \text { and } t \in\left[t_{0}, \infty\right)
\end{aligned}
$$

If we take $\rho(t)=\frac{1}{t}$ and $H(t, s)=(t-s)^{2}$, Then $\frac{\partial H(t, s)}{\partial s}=-2(t-s), h(t, s)=2, t>0$, $X\left(t, t_{0}\right)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s) q(s) d s=\frac{1}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t}(t-s)^{2} s d s=\frac{1}{\left(t-t_{0}\right)^{2}}\left[\frac{t^{4}}{12}-\frac{t^{2} t_{0}^{2}}{2}+\frac{2 t t_{0}^{3}}{3}-\frac{t_{0}^{4}}{4}\right]$, $Y\left(t, t_{0}\right)=\frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} r(s) \rho(s)\left[\gamma(s) \sqrt{H(t, s)}+l_{3} h(t, s)\right]^{2} d s \quad ; \gamma(s)=-\frac{l_{3} \dot{\rho}(s)}{\rho(s)}=-7 \cdot \frac{(-1)}{s}=\frac{7}{s}$,
$Y\left(t, t_{0}\right)=\frac{1}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t}\left[\frac{7}{s}(t-s)+14\right]^{2} d s=\frac{49}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t}\left[\frac{t}{s}+1\right]^{2} d s$ $=\frac{49}{\left(t-t_{0}\right)^{2}}\left[2 t \ln t+\frac{t^{2}}{t_{0}}-2 t \ln t_{0}-t_{0}\right]$,
$\lim _{t \rightarrow \infty} \sup \left[X\left(t, t_{0}\right)-\frac{1}{4 c_{1}} Y\left(t, t_{0}\right)\right]$
$=\lim _{t \rightarrow \infty} \sup \left[\frac{1}{\left(t-t_{0}\right)^{2}}\left\langle\frac{t^{4}}{12}-\frac{t^{2} t_{0}^{2}}{2}+\frac{2 t t_{0}^{3}}{3}-\frac{t_{0}^{4}}{4}-\frac{7}{2} t \ln t-\frac{7 t^{2}}{4 t_{0}}+\frac{7}{2} t \ln t_{0}+\frac{7 t_{0}}{4}\right\rangle\right]=\infty$,

It follows from theorem 2.3 that the given equation (16) is oscillatory.

Remark 2.3: Theorem 2.3 extends the results of A.Tiryaki and A.Zafar [14], S. R. Grace [5] and CH. G. Philos [15].

Theorem 2.4: Suppose that $\left(O_{1}\right)$ holds. And moreover, ρ, h and H be as in theorem 2.3 and
$O_{7}: \lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} r(s) \rho(s)\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right]^{2} d s<\infty$,
$O_{8}: \lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s) q(s) d s=\infty$,

Then equation (1) is oscillatory.
Proof. Let $x(t)$ be a non oscillatory solution of equation (1) and assume that $x(t)>0$ for all $t \geq T_{1} \geq t_{0}$.

Define $\quad \omega(t)=\frac{\rho(t) r(t) \psi(x(t)) \dot{x}(t)}{g(x(t))}, \quad t \geq T_{2}$,

Differentiating (17) and using (1), (O_{1}), we see that

$$
\dot{\omega}(t) \leq-\rho(t) q(t)+\frac{\dot{\rho}(t)}{\rho(t)} \omega(t)-l l_{1} \frac{1}{\rho(t) r(t)} \omega^{2}(t), \quad t \geq T_{2}
$$

Then, for all $t \geq T_{2}$, we obtain

$$
\int_{T_{2}}^{t} H(t, s) \rho(s) q(s) d s \leq-\int_{T_{2}}^{t} H(t, s) \dot{\omega}(s) d s+\int_{T_{2}}^{t} \frac{H(t, s) \dot{\rho}(s)}{\rho(s)} \omega(s) d s-k \int_{T_{2}}^{t} \frac{H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s,
$$

Where $k=l l_{1}$ is a positive constant.

Then, for all $t \geq T_{2}$, we have

$$
\left.\begin{array}{rl}
\begin{array}{c}
\int_{T_{2}}^{t} H(t, s) \rho(s) q(s) d s \leq-\left[\left.H(t, s) \omega(s)\right|_{T_{2}} ^{t}-\int_{T_{2}}^{t} \frac{\partial H(t, s)}{\partial s} \omega(s) d s\right]
\end{array}+\int_{T_{2}}^{t} \frac{H(t, s) \dot{\rho}(s)}{\rho(s)} \omega(s) d s \\
& -k \int_{T_{2}}^{t} \frac{H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s
\end{array}\right] \begin{aligned}
& \leq H\left(t, T_{2}\right) \omega\left(T_{2}\right)-\int_{T_{2}}^{t}\left[h(t, s) \sqrt{H(t, s)}+\frac{H(t, s) \dot{\rho}(s)}{\rho(s)}\right] \omega(s) d s-k \int_{T_{2}}^{t} \frac{H(t, s)}{\rho(s) r(s)} \omega^{2}(s) d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq H\left(t, T_{2}\right) \omega\left(T_{2}\right)-\int_{T_{2}}^{t}\left\{\frac{k_{3} H(t, s)}{\rho(s) r(s)} \omega^{2}(s)+\sqrt{H(t, s)}\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right] \omega(s)\right\} d s \\
& \leq H\left(t, T_{2}\right) \omega\left(T_{2}\right)+\int_{T_{2}}^{t} \frac{\rho(s) r(s)}{4 k}\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)}\right]^{2} d s \\
& \quad-\int_{T_{2}}^{t}\left\{\sqrt{\frac{k_{3} H(t, s)}{\rho(s) r(s)}} \omega(s)+\frac{1}{2} \sqrt{\frac{\rho(s) r(s)}{k}}\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right]\right\}^{2} d s
\end{aligned}
$$

Then, for all $T_{2} \geq t_{0}$, we have
$\leq H\left(t, T_{2}\right) \omega\left(T_{2}\right)+\frac{1}{4 k} \int_{T_{2}}^{t} \rho(s) r(s)\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right]^{2} d s$, for all $T_{2} \geq t_{0}$,

Now if we divide (18) by $H\left(t, t_{0}\right)$, take the upper limit as $t \rightarrow \infty$, and apply $\left(O_{7}\right)$, we obtain

$$
\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s) q(s) d s<\infty .
$$

This contradicts to the condition $\left(O_{8}\right)$; hence, the proof is completed.

Example 2.4: Consider the equation

$$
\begin{equation*}
\left[\left(\frac{t^{2}+2}{t^{2}+3}\right)\left(\frac{x^{4}(t)+1}{x^{4}(t)+5}\right) \dot{x}(t)\right]^{\bullet}+x^{5}(t)\left[\frac{2}{t}+2 \sin t+x^{4}(t)\right]=0, \quad t>0 . \tag{19}
\end{equation*}
$$

We note that

$$
\begin{aligned}
& r(t)=\frac{t^{2}+2}{t^{2}+3}>0, \quad \forall t \geq t_{0}>0, \quad \psi(x)=\frac{x^{4}+1}{x^{4}+5}>0 \quad \text { and } \quad \frac{1}{\psi(x)}=\frac{x^{4}+5}{x^{4}+1} \geq 1, \quad \forall x \in R, \\
& \frac{g_{1}(t, x(t))}{g(x(t))}=\frac{x^{5}(t)\left[\frac{2}{t}+2 \sin t+x^{4}(t)\right]}{x^{5}(t)}=\frac{2}{t}+2 \sin t+x^{4}(t)
\end{aligned}
$$

$$
\geq \frac{2}{t}+2 \sin t=q(t), \text { for all } x \neq 0 \text { and } t \in\left[t_{0}, \infty\right)
$$

Let $H(t, s)=(t-s)^{2} \geq 0, \quad \forall t \geq s \geq t_{0}>0$,
Then $\frac{\partial H(t, s)}{\partial s}=-2(t-s) \quad$ and then $\quad h(t, s)=2$ and taking $\rho(t)=3>0 \quad$ for $t>0$, then $\dot{\rho}(t)=0$
$\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} \rho(s) r(s)\left[h(t, s)-\frac{\dot{\rho}(s)}{\rho(s)} \sqrt{H(t, s)}\right]^{2} d s=\lim _{t \rightarrow \infty} \sup \frac{12}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t} \frac{s^{2}+2}{s^{2}+3} d s$ $=\lim _{t \rightarrow \infty} \sup \frac{12}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t}\left[1-\frac{1}{s^{2}+3}\right] d s<\infty$,
$\lim _{t \rightarrow \infty} \sup \frac{1}{H\left(t, t_{0}\right)} \int_{t_{0}}^{t} H(t, s) \rho(s) q(s) d s=\lim _{t \rightarrow \infty} \sup \frac{3}{\left(t-t_{0}\right)^{2}} \int_{t_{0}}^{t}(t-s)^{2}\left[\frac{2}{s}+2 \sin s\right] d s=\infty$.

It follows from Theorem 2.4 that the given equation (19) is oscillatory.
Remark 2.4 Theorem 2.4 extends the results of Grace [6] , [7], Ohriska and A.Zulova [12] and A.Tiryaki and A.Zafar [14].

3. References

[1] F. V. Atkinson, On second order nonlinear oscillations. Pacific. J. Math. 5(1955), P.643-647.
[2] E. M.Elabbasy and Sh. R. Elzeiny, Oscillation theorem concerning non-linear differential equations of the second order, Opu. Math. 31 (2011), P. 373-391.
[3] M. M. A. El-Sheikh, Oscillation and non-oscillation criteria for second order nonlinear differential equations I, J. Math. Anal. Appl. 179 (1993) , p. 14-27.
[4] S. R. Grace, Oscillation theorems for second order nonlinear differential equations with damping, Math, Nachr. 141 (1989), p. 117-127.
[5] S. R. Grace, Oscillation theorems for nonlinear differential equations ofsecond order, J. Math. Anal. Appl. 171 (1992), p. 220 - 241.
[6] S. R. Grace and B. S. Lalli, Oscillation theorems for nonlinear second order functional differential equations with damping, Bull. Inst. Math. Acad. Sinica 13 (1985), p. 183-192.
[7] J. R. Graef and P. W. Spikes, On the oscillatory behaviour of solutions of second order nonlinear differential equations. Czech. Math. J. 36 (1986), p. 275-284.
[8] P. Hartman, Non-oscillatory linear differential equation of second order, Amer. J. Math. 74 (1952), p. 389 - 400.
[9] I. V. Kamenev, Integral criterion for oscillation of linear differential equations of second order, Math. Zametki 23 (1978), p. 249-251.
[10] J. V. Manojlovic, Oscillation criteria for second order sub linear differential equation, Comput. Math. Appl. 39 (2000), p. 161-172.
[11] J. V. Manojlovic, Integral averages and oscillation of second order nonlinear differential equations, Comput. Math. Appl. 41 (2001), p. 1521-1534.
[12] J. Ohriska and A. Zulova, Oscillation criteria for second order nonlinear differential equations, Im preprint series A, No.10(2004), p.1-11.
[13] CH. G. Philos, A second order super linear oscillation criterion, Canad. Math. Bull. 27 (1984) , p. 102-112.
[14] A. Tiryaki and A. Zafer, Oscillation criteria for second order nonlinear differential equations with damping, Turk. J. Math. 24 (2000), p.185-196.
[15] A. Wintner, A criterion of oscillatory stability, Quart, Appl. Math. 7 (1949), p. 115-117.
[16] J. S. W. Wong, Oscillation theorems for second order nonlinear differential equations, Bull. Inst. Math. Sinica 3 (1975), p. 283-309.

