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1 Introduction  

Second-order nonlinear differential equations are 

crucial in various mathematical fields and have 

extensive applications across multiple disciplines. They 

are essential for modeling dynamic systems and offer 

numerous intriguing applications, particularly in 

engineering. 

Recently, researchers have demonstrated increasing 

interest in determining appropriate conditions for 

oscillation in this class of equations. Traditional 

approaches typically address constant coefficients, but 

the introduction of variable coefficients brings both 

challenges and opportunities for new theoretical 

insights [12, 14]. 

Interest in this area has significantly increased, with 

researchers keen to explore the theoretical aspects 

alongside numerical methods. In many cases, exact 

solutions may be unattainable, which emphasizes the 

importance of studying qualitative properties within 

suitable functional spaces. This often involves 

simplifying the original equation into more familiar 

forms or developing numerical algorithms. Such 

investigations are essential for addressing these 

equations and contribute to our understanding of their 

oscillatory properties, which are key elements of the 
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qualitative theory (see [1-19]). This article aims to 

examine the oscillations of all solutions of second-order 

nonlinear differential equations of a specified form: 

[𝑟(𝑡)𝑓(𝑥̇(𝑡))]∙ + 𝑞(𝑡)𝑔(𝑥(𝑡)) = 0;                 (1.1) 

𝑟, 𝑞 ∈ 𝐶([𝑡0, ∞ ), ℝ), 𝑡0 ≥  0  , 𝑟 > 0 , 𝑓 is a 

continuous function on ℝ with 𝑦𝑓(𝑦) > 0 for all 𝑦 ≠ 0 

and g is continuously differentiable function on ℝ 

except   𝑥 = 0 with 𝑥𝑔(𝑥) > 0 and 0)(  kxg  for 

all 𝑥 ≠ 0. Also 𝑓(𝑢) is called superlinear if it satisfies: 

∫
𝑑𝑢

𝑓(𝑢)

∞

ℰ
< ∞   𝑎𝑛𝑑  ∫

𝑑𝑢

𝑓(𝑢)

−∞

−ℰ
< ∞                           (1.2) 

In this study, we focus specifically on the solutions of 

Eq. (1.1) that belonging to certain interval, which may 

depend on the particular solution. The solution 𝑥(𝑡) of 

the differential Eq. (1.1) is classified as an oscillator if 

it is neither eventually positive nor eventually negative. 

Equation (1.1) is considered an oscillator if all its 

solutions are oscillators. It is noteworthy that integral 

media techniques and Riccati substitution, are utilized 

to analyze the oscillatory characteristics of Eq. (1.1). 

For further information, refer to the works of Ahmed 

and Ali [3], Saad et al. [16], Onose [15] and Philos 

[17]. The particular case of equation (1. 1), that is to 

say, when 𝑔(𝑥(𝑡)) = |𝑥(𝑡)|𝛾𝑠𝑖𝑔𝑛𝑥(𝑡), 𝛾 > 0 is 

particularly interesting. In fact, differential equations of 

the form 

(𝑟(𝑡)𝑥̇(𝑡))
⦁

+ 𝑞(𝑡)|𝑥(𝑡)|𝛾𝑠𝑖𝑔𝑛𝑥(𝑡) = 𝑜,    𝑡 ≥ 𝑡0                                        

(1.3) 

and 

(𝑟(𝑡)𝑓(𝑥̇(𝑡)))
⦁

+ 𝑞(𝑡)|𝑥(𝑡)|𝛾𝑠𝑖𝑔𝑛𝑥(𝑡) = 𝑜, 𝑡 ≥ 𝑡0 

(1.4) 

are serve as prototypes of equation (1.1). However, 

Ahmed et al. [2] and Ahmed and Ali [3] investigated 

equation (1.3), and deriving several oscillation criteria 

for different ranges of 𝛾, i.e. (𝛾 > 1, 𝛾 > 0) 

respectively. Their results were subsequently extended 

by Ahmed [1] for the equation (1.4) under some 

conditions where 𝛾 > 0.  

In [16], Saad et al. studied the sub-linear form of 

equation (1.1) and introduced new sufficient conditions 

for oscillation. For more details, readers are encouraged 

to see the work of Atkinson [5], Philos [17] and wong 

[18] which investigated various types of equations 

(1.1). For additional details, the studies by Elabbasy 

and Elzeiny [8], Kim [13], and Al-Jaser et al. [4].  offer 

valuable insight. Previous studies have established 

various oscillation criteria for some specific forms of 

variable coefficient equations. However, it would be 

interesting to enhance and expand the finding results 

for the more general sup-linear form of equation (1.1), 

and this what our current research article concentrates 

on. 

2  RESULTS 

In the sequel, we need the following lemma, which 

includes Lemmas of Erbe [9], Greaf and Spikes [11] 

and Wong [18]. 
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Lemma 2.1: Suppose that  

(1)  𝑟(𝑡) ≤ 𝑘1 on [𝑡0, ∞), 

(2) 𝑦𝑓(𝑦) ≥ 𝑘2( 𝑓(𝑦))2  for all 𝑦 ∈ ℝ, 𝑘2 > 0. 

(3) lim
𝑡→∞

inf ∫ 𝑞(𝑠)𝑑𝑠 ≥ 0     𝑓𝑜𝑟 𝑎𝑙𝑙 𝑙𝑎𝑟𝑔𝑒 𝑇
𝑡

𝑇
. 

Every non-oscillatory solution to equation (1.1) which 

cannot be absolutely constant must satisfies 𝑥(𝑡)𝑥̇(𝑡) >

0 for all large 𝑡 . 

Proof: Assume that  ( ) 0x t   for .01 tTt   If the 

lemma is false, then either 𝑥̇(𝑡) < 0  for all large t  or 

𝑥̇(𝑡) oscillates for all large t  .  

Case 1: we let 𝑥̇(𝑡) < 0 for all large  and may 

consider that 1T  is sufficiently large such that  

  ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇1
≥ 0      𝑎𝑛𝑑      𝑥̇(𝑡) < 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑇1.  

Now, integrating the equation (1.1), we obtain 

𝑟(𝑡)𝑓(𝑥̇(𝑡)) − 𝑟(𝑇1)𝑓(𝑥̇(𝑇1)) + 𝑔(𝑥(𝑡)) ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇1

− ∫ [𝑥̇(𝑠)𝑔̀(𝑥(𝑠)) ∫ 𝑞(𝑢)𝑑𝑢
𝑠

𝑇1

] 𝑑𝑠
𝑡

𝑇1

= 0 

But           𝑔(𝑥(𝑡)) ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇1
≥ 0          𝑎𝑛𝑑  

 − ∫ [𝑥̇(𝑠)𝑔̀(𝑥(𝑠)) ∫ 𝑞(𝑢)𝑑𝑢
𝑠

𝑇1

] 𝑑𝑠 ≥ 0
𝑡

𝑇1

 

Thus, for every 1Tt  , we have 

𝑟(𝑡)𝑓(𝑥̇(𝑡)) ≤ 𝑟(𝑇1)𝑓(𝑥̇(𝑇1)) 

Using (1), we get it 

𝑓(𝑥̇(𝑡)) ≤
𝑟(𝑇1)𝑓(𝑥̇(𝑇1))

𝑘1
= −𝐵    where  𝐵 > 0. 

Then 

𝑓(𝑥̇(𝑡)) ≤ −𝐵  𝑓𝑜𝑟 𝑡 ≥ 𝑇1 

𝑥̇(𝑡) ≤ −𝐴  𝑓𝑜𝑟 𝑡 ≥ 𝑇1  𝑎𝑛𝑑    𝐴 > 0. 

𝑥(𝑡) ≤ 𝑥(𝑇1) − 𝐴(𝑡 − 𝑇1) 

From last inequality, we have 𝑥(𝑡) ⟶ −∞ as 𝑡 ⟶ ∞, 

which is contrary to  𝑥(𝑡) > 0 for 𝑡 ≥ 𝑇1.  

Case 2: If )(tx


oscillates, then there exists }{ n

where 𝑥̇(𝜏𝑛) = 0,  n=1,2,3,… for all 𝑡 ≥ 𝑇1. Define   

𝜔(𝑡) =
𝑟(𝑡)𝑓(𝑥̇(𝑡))

𝑔(𝑥(𝑡))
 , 𝑡 ≥ 𝑇. 

This and by the equation (1.1), we get 

𝜔̇(𝑡) = −𝑞(𝑡) −
𝑟(𝑡)𝑓(𝑥̇(𝑡))𝑔́(𝑥(𝑡))𝑥̇(𝑡)

𝑔2(𝑥(𝑡))
 , 𝑡 ≥ 𝑇. 

From the conditions (1) and (2), we have that 

𝜔̇(𝑡) ≤ −𝑞(𝑡) − 𝐴1𝜔2(𝑡),    𝑡 ≥ 𝑇. 

Where 𝐴1 = 𝑘𝑘2 𝑘1⁄ . Then, 

𝑞(𝑡) ≤ −𝜔̇(𝑡) − 𝐴1𝜔2(𝑡),   𝑡 ≥ 𝑇,  

which leads to  

               𝜔̇(𝑡) ≤ −𝑞(𝑡)        for all  𝑡 ≥ 𝑇1            (2.1) 

Thus, for every 
1n n

 


, we get  

t
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∫ 𝑞(𝑠)𝑑𝑠
𝜏𝑛+1

𝜏𝑛

≤ − ∫ 𝜔̇(𝑠)𝑑𝑠
𝜏𝑛+1

𝜏𝑛

= −𝜔(𝜏𝑛+1) + 𝜔(𝜏𝑛)

= 0, 

Since it contradicts with condition (3), then the proof of 

the lemma is complete. 

Theorem 2.1: Assume that the conditions (1) - (3) 

hold, 

 (4)  
𝑓(𝑦)

𝑦
≤ 𝑘3  for all 𝑦 ≠ 0. 

 Assume that   be a positive continuously 

differentiable function on the interval  ,0t   such 

that 𝜌̇ ≥ 0 𝑎𝑛𝑑 (𝜌̇(𝑡)𝑟(𝑡))
.
 ≤ 0  𝑜𝑛  [𝑡0, ∞), and  

(5)    lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡𝛽 ∫ (𝑡 − 𝑠)𝛽𝜌(𝑠)
𝑡

𝑡0
𝑞(𝑠)𝑑𝑠 =

∞, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝛽 ≥ 0.  

Then, all solutions of the super linear Eq. (1.1) are 

oscillatory.      

Proof: Without loss of generality, suppose that there 

exists a solution x(t) of (1.1) satisfies  𝑥(𝑡) >

0 𝑜𝑛 [𝑇1, ∞) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇1 ≥ 𝑡0 ≥ 0. From Lemma2.1, we 

obtain 𝑥̇(𝑡) > 0 on [𝑇2, ∞) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑇2 ≥ 𝑇1. Define  

𝜔(𝑡) =
𝜌(𝑡) 𝑟(𝑡)𝑓(𝑥̇(𝑡))

𝑔(𝑥(𝑡))
 , 𝑡 ≥ 𝑇2. 

𝜔̇(𝑡) =
𝜌̇(𝑡) 𝑟(𝑡)𝑓(𝑥̇(𝑡))

𝑔(𝑥(𝑡))
+

𝜌(𝑡)[𝑟(𝑡)𝑓(𝑥̇(𝑡))].

𝑔(𝑥(𝑡))

−
𝜌(𝑡)𝑟(𝑡)𝑓(𝑥̇(𝑡))𝑔́(𝑥(𝑡))𝑥̇(𝑡)

𝑔2(𝑥(𝑡))
 , 𝑡

≥ 𝑇2. 

This and by the equation (1.1), we obtain 

𝜔̇(𝑡) ≤
𝜌̇(𝑡) 𝑟(𝑡)𝑓(𝑥̇(𝑡))

𝑔(𝑥(𝑡))
− 𝜌(𝑡)𝑞(𝑡)        , 𝑡 ≥ 𝑇2. 

From the conditions (4), we have that 

𝜔̇(𝑡) ≤ 𝑘3 𝜌̇(𝑡)
 𝑟(𝑡)𝑥̇(𝑡)

𝑔(𝑥(𝑡))
− 𝜌(𝑡)𝑞(𝑡)        , 𝑡 ≥ 𝑇2. 

Then  

𝜌(𝑡)𝑞(𝑡) ≤ −𝜔̇(𝑡) + 𝑘3 𝜌̇(𝑡)𝑟(𝑡)
 𝑥̇(𝑡)

𝑔(𝑥(𝑡))
        , 𝑡 ≥ 𝑇2 

Integrate the last inequality multiplied by(𝑡 −

𝑠)𝛽 𝑜from 𝑇2 to t, we have 

∫ (𝑡 − 𝑠)𝛽𝜌(𝑠)
𝑡

𝑇2
𝑞(𝑠)𝑑𝑠 ≤ − ∫ (𝑡 − 𝑠)𝛽𝑡

𝑇2
𝜔̇(𝑠)𝑑𝑠 +

𝑘3 ∫ (𝑡 − 𝑠)𝛽𝑡

𝑇2
𝜌̇(𝑠)𝑟(𝑠)

 𝑥̇(𝑠)

𝑔(𝑥(𝑠))
   𝑑𝑠       (2.2) 

By the Bonnet’s theorem, for each 𝑡 ≥ 𝑇2, there exists 

𝑎𝑡 ∈ [𝑇2, 𝑡] such that 

− ∫ (𝑡 − 𝑠)𝛽
𝑡

𝑇2

𝜔̇(𝑠)𝑑𝑠

= −(𝑡 − 𝑇2)𝛽 ∫ 𝜔̇(𝑠)𝑑𝑠
𝑎𝑡 

𝑇2

= −(𝑡 − 𝑇2)𝛽[𝜔(𝑎𝑡 ) − 𝜔(𝑇2)] 

≤ (𝑡 − 𝑇2)𝛽𝜔(𝑇2)                         (2.3) 

But (𝑡 − 𝑠)𝛽(𝜌̇(𝑡)𝑟(𝑡)) is a decreasing function, so by 

applying the Bonnet’s theorem again for each 𝑡 ≥ 𝑇2, 

there exist  𝑏𝑡 ∈ [𝑇2, 𝑡] such that 

∫ (𝑡 − 𝑠)𝛽
𝑡

𝑇2

𝜌̇(𝑡)𝑟(𝑠)
 𝑥̇(𝑠)

𝑔(𝑥(𝑠))
   𝑑𝑠

= (𝑡

− 𝑇2)𝛽𝜌̇(𝑇2)𝑟(𝑇2) ∫
 𝑥̇(𝑠)

𝑔(𝑥(𝑠))
   𝑑𝑠

𝑏𝑡 

𝑇2
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            = (𝑡 − 𝑇2)𝛽𝜌̇(𝑇2)𝑟(𝑇2) ∫
𝑑𝑢

𝑔(𝑢)
 

𝑥(𝑏𝑡 )

𝑥(𝑇2)
                              

(2.4) 

Hence, from (2.3) and (2.4) in (2.2), we have 

∫ (𝑡 − 𝑠)𝛽𝜌(𝑠)
𝑡

𝑇2

𝑞(𝑠)𝑑𝑠

≤ (𝑡 − 𝑇2)𝛽𝜔(𝑇2)

+ 𝑘3 (𝑡

− 𝑇2)𝛽𝜌̇(𝑇2)𝑟(𝑇2) ∫
𝑑𝑢

𝑔(𝑢)
 ,

𝑥(𝑏𝑡 )

𝑥(𝑇2)

 

Now, dividing by 𝑡𝛽 and taking the upper limit as 𝑡 →

∞, we get 

lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡𝛽
∫ (𝑡 − 𝑠)𝛽𝜌(𝑠)

𝑡

𝑇2

𝑞(𝑠)𝑑𝑠 < ∞, 

which leads to a contradiction with condition (5). 

Hence, the proof is complete. 

Example 2.1: Consider the following differential 

equation  

[(
2𝑡2

𝑡8+16
) (𝑥̇(𝑡) +

𝑥̇7(𝑡)

𝑥̇6(𝑡)+1
)]

∙

+
1

𝑡6 𝑥11(𝑡) = 0, 𝑡 ≥

𝑡0 ≥ 8√48.        

We have that  

(1)   0 <  𝑟(𝑡) < 2  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0. 

(2)  0 <  
𝑓(𝑦)

𝑦
= 1 +

𝑦6

𝑦6 + 1
< 2     𝑓𝑜𝑟  𝑎𝑙𝑙 𝑦. 

(3)  𝑔(𝑥) = 𝑥11  𝑎𝑛𝑑 ∫
𝑑𝑥

𝑔(𝑥)

∞

𝜀

< ∞ 

   𝑎𝑛𝑑         ∫
𝑑𝑥

𝑔(𝑥)

−∞

−𝜀
< ∞   𝑓𝑜𝑟 𝑎𝑙𝑙 𝜀.   

(4)   lim
𝑡→∞

inf ∫ 𝑞(𝑠)𝑑𝑠 = lim
𝑡→∞

inf ∫
𝑑𝑠

𝑠6
> 0.    

𝑡

𝑇

𝑡

𝑇

 

By taking 𝜌(𝑡) = 𝑡5  such that  𝜌̇(𝑡) = 5𝑡4 ,  

(𝑟(𝑡)𝜌̇(𝑡)). ≤ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0 ≥ 8√48  and  

(5) lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡𝛽
∫ (𝑡 − 𝑠)𝛽𝜌(𝑠)

𝑡

𝑇2

𝑞(𝑠)𝑑𝑠   

         =  lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

(𝑡 − 𝑠)

𝑠

𝑡

𝑇2

𝑑𝑠 =  ∞     𝑤ℎ𝑒𝑟𝑒 𝛽 = 1. 

By theorem 2.1, the solutions of equation are 

oscillatory. 

Remark 2.1: Theorem 2.1 extends results of Wong and 

Yeh [19]. 

Theorem 2.2: If the conditions (1)- (3) are fulfilled and 

(6)  0 < 𝑘4 <
𝑓(𝑦)

𝑦
  for all 𝑦 ≠ 0. 

(7)   lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

1

𝑟(𝑠)

𝑡

𝑡0
∫ 𝑞(𝑢)

𝑠

𝑡0
𝑑𝑢𝑑𝑠 = ∞.       

Then, Eq. (1.1) is oscillatory. 

Proof: Let ( )x t  be a non-oscillatory solution of the eq. 

(1.1) and assume that 0)( tx 1 0for t T t   . 

Lemma 2.1, implies that  𝑥̇(𝑡) > 0 𝑜𝑛 [𝑇2,∞) for all 

𝑇2 ≥ 𝑇1. From the inequality (2.1), we obtain 

∫ 𝜔̇(𝑠)𝑑𝑠
𝑡

𝑇2
≤ − ∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
       for all  𝑡 ≥ 𝑇2. 

𝜔(𝑡) ≤ 𝜔(𝑇2) − ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇2
     for all  𝑡 ≥ 𝑇2. 

So, we can get the following 

 𝑓(𝑥̇(𝑡))

𝑔(𝑥(𝑡))
≤

𝜔(𝑇2)

𝑟(𝑡)
−

1

𝑟(𝑡)
∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
                               (2.5) 
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Since 𝑟(𝑡) ≥ 𝑘5 > 0   𝑡ℎ𝑒𝑛       

    
𝟏

𝒓(𝑡)
≤

1

𝑘5
> 0   for all  𝑡 ≥ 𝑇2                               (2.6)                         

Hence, by the condition (6) and from (2.6) in (2.5), we 

have 

 𝑘4𝑥̇(𝑡)

𝑔(𝑥(𝑡))
≤

𝜔(𝑇2)

𝑘5

−
1

𝑟(𝑡)
∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑇2

 

Thus  

 𝑘4𝑥̇(𝑡)

𝑔(𝑥(𝑡))
≤

𝜔(𝑇2)

𝑘5
−

1

𝑟(𝑡)
∫ 𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
                                                                                   

By integration, division by 𝑡 and taking the limit 

superior as 𝑡 → ∞, we obtain 

lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

 𝑑𝑢

𝑔(𝑢)

𝑥(𝑡)

𝑥(𝑇2)
≤ lim

𝑡→∞
𝑠𝑢𝑝 1

𝑡
 
𝜔(𝑇2)

𝑘4𝑘5
(𝑡 − 𝑇2) −

1

𝑘4
lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

1

𝑟(𝑠)

𝑡

𝑇2
∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠

𝑠

𝑇2
≤ −∞, 

This is a contradiction. Then, the proof is completed. 

Example 2.2: Applying the conditions of Theorem 2.2 

to this equation as follows: 

[(
8𝑡2

𝑡2 + 1
) (4𝑥̇(𝑡) +

𝑥̇11(𝑡)

𝑥̇4(𝑡) + 1
)]

∙

+ 𝑡4𝑥13(𝑡) = 0,    𝑡

≥ 𝑡0 > 0 

   𝑟(𝑡) =
8𝑡2

𝑡2+1
 , 𝑓(𝑦) = 4𝑦 +

𝑦11

𝑦4+1
, 𝑞(𝑡) =  𝑡4,

𝑔(𝑥) = 𝑥13 and 

(1)   lim
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇
= lim

𝑡→∞
𝑖𝑛𝑓 ∫ 𝑠4𝑑𝑠

𝑡

𝑇
= ∞ > 0. 

(2)  lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

1

𝑟(𝑠)

𝑡

𝑇2

∫ 𝑞(𝑢)𝑑𝑢𝑑𝑠
𝑠

𝑇2

= lim
𝑡→∞

𝑠𝑢𝑝
1

𝑡
∫

𝑠2 + 1

8𝑠2

𝑡

𝑇2

∫ 𝑢4𝑑𝑢𝑑𝑠
𝑠

𝑇2

= ∞. 

Then, every solution of the equation is oscillatory. 

Remark 2.2:  Theorem 2.2 extends the results of Philos 

[17]. 

Theorem 2.3: In addition to conditions (1), (2) and (3), 

suppose that 

(8)  0 < 𝑘4 <
𝑓(𝑦)

𝑦
≤ 𝑘6  for all 𝑦 ≠ 0. 

Assume that   be a positive continuously 

differentiable function on the interval  ,0t   such 

that 𝜌̇ ≥ 0 𝑎𝑛𝑑 (𝜌̇(𝑡)𝑟(𝑡))
.
 ≤ 0  𝑜𝑛  [𝑡0, ∞), and  

(9)   lim
𝑡→∞

∫ 𝜌(𝑠)𝑞(𝑠)
𝑡

𝑡0
𝑑𝑠 = ∞. 

(10)   lim
𝑡→∞

∫
1

𝜌(𝑠)𝑟(𝑠)
∫ 𝜌(𝑢)𝑞(𝑢)

𝑠

𝑡0

𝑡

𝑡0
𝑑𝑢𝑑𝑠 = ∞       

Then, every solution of the superlinear equation (1.1) is 

oscillatory. 

Proof: Let ( )x t  be a non-oscillatory solution eq. (1.1) 

and assume that 0)( tx 1 0for t T t   . From 

Lemma 2.1, we know that 𝑥̇(𝑡) > 0 𝑜𝑛 [𝑇2,∞) for all 

𝑇2 ≥ 𝑇1. 

Multiplying the equation (1.1) by  
𝜌(𝑡)

𝑔(𝑥(𝑡))
, we have  

𝜌(𝑡)(𝑟(𝑡)𝑓(𝑥̇(𝑡))).

𝑔(𝑥(𝑡))
+ 𝜌(𝑡)𝑞(𝑡)=0 
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Integrating the last equation and by the condition (8), 

we have  

𝑘4
𝜌(𝑡)𝑟(𝑡)𝑥̇(𝑡)

𝑔(𝑥(𝑡))
≤

𝜌(𝑇2)𝑟(𝑇2)𝑓(𝑥̇(𝑇2))

𝑔(𝑥(𝑇2))
+

𝑘6 ∫
𝜌̇(𝑠)𝑟(𝑠)𝑥̇(𝑠)

𝑔(𝑥(𝑠))

𝑡

𝑇2
𝑑𝑠 − ∫ 𝜌(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
               (2.7) 

Since (𝜌̇(𝑡)𝑟(𝑡)) in the inequality (2.7) is a decreasing 

function, then by the Bonnet’s theorem, for each 𝑡 ≥ 𝑇2, 

there exists 𝛽𝑡 ∈ [𝑇2, 𝑡] such that 

𝑘6 ∫
𝜌̇(𝑡)𝑟(𝑠)𝑥̇(𝑠)

𝑔(𝑥(𝑠))

𝑡

𝑇2

𝑑𝑠

= 𝑘6 𝜌̇(𝑇2)𝑟(𝑇2) ∫
𝑥̇(𝑠)

𝑔(𝑥(𝑠))

𝛽𝑡 

𝑇2

𝑑𝑠 

                                                                      =

𝑘6 𝜌̇(𝑇2)𝑟(𝑇2) ∫
𝑑𝑢

𝑔(𝑢)

𝑥(𝛽𝑡 )

𝑥(𝑇2)
= 𝑘6 𝑁1 < ∞. 

Let     

𝐶1 =
𝜌(𝑇2)𝑟(𝑇2)𝑓(𝑥̇(𝑇2))

𝑔(𝑥(𝑇2))
+ 𝑁1, 

Thus, the inequality (2.7) becomes 

𝑘4
𝜌(𝑡)𝑟(𝑡)𝑥̇(𝑡)

𝑔(𝑥(𝑡))
≤ 𝐶1 − ∫ 𝜌(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑇2
                              

(2.8) 

But  lim
𝑡→∞

∫ 𝜌(𝑠)𝑞(𝑠)
𝑡

𝑇2
𝑑𝑠 = ∞, then, there exists 𝑡 ≥

𝑇3 ≥ 𝑇2 achieves 

∫ 𝜌(𝑠)𝑞(𝑠)
𝑡

𝑇3

𝑑𝑠 ≥ 2𝐶1 

That's  

𝐶1 ≤
1

2
∫ 𝜌(𝑠)𝑞(𝑠)

𝑡

𝑇3
𝑑𝑠. 

Thus, the inequality (2.8) becomes 

𝑥̇(𝑡)

𝑔(𝑥(𝑡))
≤ −

1

2𝑘4

1

𝜌(𝑡)𝑟(𝑡)
∫ 𝜌(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑇3

 

Integrating this inequality, we obtain 

∫
𝑑𝑢

𝑔(𝑢)

𝑥(𝑡)

𝑥(𝑇3)

≤ −
1

2𝑘4

∫
1

𝜌(𝑠)𝑟(𝑠)
∫ 𝜌(𝑢)𝑞(𝑢)𝑑𝑢𝑑𝑠

𝑠

𝑇2

𝑡

𝑇3

⟶ −∞   𝑎𝑠  𝑡 ⟶ ∞. 

This is a contradiction, which completes the proof. 

  Example 2.3: Suppose we have the following 

equation: 

[(
1

𝑡4
) (

𝑥̇(𝑡)

𝑥̇2(𝑡) + 1
)]

∙

+ (1 + 2𝑐𝑜𝑠𝑡)𝑥5(𝑡) = 0,    𝑡 ≥ 𝑡0

> 1. 

   We have  𝑟(𝑡) =
1

𝑡4  , 𝑓(𝑦) =
𝑦

𝑦2+1
, 𝑞(𝑡) =  1 +

2𝑐𝑜𝑠𝑡, 𝑔(𝑥) = 𝑥5, 

(1) lim
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑞(𝑠)𝑑𝑠
𝑡

𝑇
= lim

𝑡→∞
𝑖𝑛𝑓 ∫ (1 + 2 cos(𝑠))𝑑𝑠

𝑡

𝑇

=  ∞ > 0
. 

Let 𝜌(𝑡) = 𝑡  such that  𝜌̇(𝑡) = 1 ,  (𝑟(𝑡)𝜌̇(𝑡)). ≤

0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0 ≥ 1, 

(2)  lim
𝑡→∞

1

𝑡
∫ 𝜌(𝑠)𝑞(𝑠)𝑑𝑠

𝑡

𝑇2

=  lim
𝑡→∞

1

𝑡
∫ 𝑠(1 + 2 cos(𝑠)) 𝑑𝑠 =

𝑡

𝑇2

∞. 

(3)  lim
𝑡→∞

∫
1

𝜌(𝑠)𝑟(𝑠)
∫ 𝜌(𝑢)𝑞(𝑢)

𝑠

𝑡0

𝑡

𝑡0

𝑑𝑢𝑑𝑠

= lim
𝑡→∞

∫ 𝑠3 ∫ 𝑢(1
𝑠

𝑡0

𝑡

𝑡0

+ 2 cos(𝑢)) 𝑑𝑢𝑑𝑠 = ∞. 
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So, Theorem 2.3, confirms the oscillation of the 

equation. 

Remark 2.3:  Theorem 2.3 extends the results of Grace 

and Lalli [10], Ahmed [1], Ahmed et al. [2] and Ahmed 

and Ali [3]. 

Remark 2.3:  Theorem 2.3 extends the results of Grace 
and Lalli [10], Ahmed [1], Ahmed et al. [2] and Ahmed 
and Ali [3]. 

3 Discussion 

A set of new oscillation conditions are stated and 
proved. Some of illustrative examples are provided to 
show the applications of the oscillation criteria and the 
comparisons between our results and studied previous 
results. 

4 Conclusions 

In this research, we have established and demonstrated 

a set of oscillation conditions that improve and extend 

the existing oscillation criteria and treating cases have 

not been discussed by known results. In addition, we 

have provided illustrative examples to support our 

work. Some notes are also included to highlight the 

importance of our main findings. 
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