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Soil chemical properties such as pH, electrical conductivity (EC), and calcium 

carbonate content (CaCO₃%) are important indicators of soil health and fertility, 

impacting nutrient availability and crop productivity. Accurate mapping of these 

properties is especially important in arid and semiarid regions, such as Libya, where 

soil salinity and alkalinity present challenges to agricultural practices. This study 

assesses the effectiveness of the Inverse Distance Weighting (IDW) method which is a 

type of spatial interpolation that estimates values at unsampled locations by weighting 

nearby sampled points based on their distance from the point being estimated. In IDW, 

closer points have a greater influence on the estimated value, while more distant points 

contribute less.  IDW method is used for interpolating spatial distributions of soil pH, 

EC, and CaCO₃% in a 13,000 square meter area at the Faculty of Agriculture Farm, 

University of Tripoli, Libya. Using a total of 71 soil samples collected from a depth of 

0–30 cm, the spatial variability of these properties through IDW was assessed, a 

method that estimates values at unsampled locations based on the weighted influence 

of nearby sampled points. The accuracy of IDW interpolations was evaluated through 

cross-validation, revealing that IDW provided reliable results for CaCO₃%, with R² 

values ranging from 63% to 75%. In contrast, the method demonstrated moderate 

effectiveness for pH (R² values between 41% and 50%) and lower accuracy for EC, 

with R² values as low as 6%. This suggests that soil pH and EC exhibit varying levels 

of spatial homogeneity, affecting the interpolation accuracy. Alternative methods like 

Kriging may be more appropriate for EC   due to their capacity to account for spatial 

autocorrelation, a key factor in environmental variables such as soil properties. The 

findings underscore the importance of selecting appropriate interpolation techniques 

based on the specific characteristics of soil properties and their spatial distribution. 
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– Spatial or geographical statistics (Geostatistics) – Mapping soil properties – GIS – 

IDW – Interpolation. 

 

 

 

Keywords: (Please provide 4 to 6 keywords, 

which can be used for indexing purposes)  

XXXX, XXXX, XXXX, XXXXXX 

Sirte University Scientific Journal (SUSJ) 
 

Journal home page: http://journal.su.edu.ly/index.php/SUSJ/index 

DOI:  10.37375/susj.v14i2.3089 

 

http://journal.su.edu.ly/index.php/JSFSU/index


SUSJ Vol. 14, No. 2 (2024) 49-56                                                                  Abuabdalla .S. Sherif  et al 2024         

 

 

50 
 

1 Introduction  

Soil chemical properties such as pH, electrical 

conductivity (EC), and calcium carbonate content 

(CaCO₃%) are crucial for understanding soil health and 

fertility, as they effect nutrient availability and crop 

productivity (Brady & Weil, 2017). Mapping these 

properties accurately is needed, particularly in regions 

like Libya, where soil salinity and alkalinity pose 

challenges to agriculture (FAO, 2019). Spatial 

variability in soil properties is driven by factors like 

soil parent material, climate, and land use, and 

geostatistical methods, such as Inverse Distance 

Weighting (IDW), are generally employed to 

interpolate these properties for spatial distribution maps 

that assist in precision agriculture (Cambardella et al., 

1994; McBratney & Pringle, 1999). Qiu, Cheng, and 

Wu (2022) also examine IDW's role in assessing soil 

pH and nutrient patterns across fields, showing how 

this method improves land management. Furthermore, 

Banerjee et al. (2023) applied IDW in the Siliguri Sub-

Division of India to create soil pH, organic matter, and 

nutrient maps, demonstrating IDW's value in regions 

with varying soil parent material and topography. IDW, 

a deterministic interpolation method, estimates values 

at unsampled points by weighting the values of nearby 

sampled points, assuming closer points have more 

influence (Lu & Wong, 2008). While simple and 

effective, IDW has limitations, such as sensitivity to 

sampling distribution and a shortage of consideration 

for spatial autocorrelation, making methods like 

Kriging sometimes more accurate (Goovaerts, 1997). 

However, IDW is frequently used in soil mapping, 

particularly in data-limited regions (Farahani et al., 

2017). 

Studies have demonstrated IDW’s effectiveness in 

various agricultural locations. For example, Diacono et 

al. (2013) used it to map soil pH and EC in 

Mediterranean fields, and Odeh et al. (1995) mapped 

soil properties in Australian soils. In Libya, IDW has 

been used to address issues like salinity and fertility, 

and recent research has applied it to map pH, EC, and 

CaCO₃% in Northwest Libya, providing valuable 

insights for soil management (El-Moujabber et al., 

2020; Aboukarima et al., 2018). Despite its limitations, 

IDW remains a practical tool for soil scientists and land 

managers due to its adaptability and computational 

efficiency. In Libyan soil research by Ghabour et al. 

(2012) focused on the use of IDW to map soil 

properties in Libyan fields. Their study stressed the 

importance of accurate spatial mapping for effective 

land management in arid and semiarid regions. A more 

recent study by Ahmed et al. (2020) applied IDW to 

soil properties at the field scale in Libya, including pH, 

EC, and CaCO₃%. Their findings highlighted the 

method's effectiveness in providing detailed spatial 

maps useful for agricultural planning and soil 

management. 

Objectives 

Evaluating the spatial distribution of pH, EC, and 

CaCO₃% using the IDW method. 

Assessing the accuracy and reliability of the IDW 

method in mapping these soil chemical properties. 

Identifying the optimal parameters (soil sampling 

number) for the IDW method in the situation of soil 

property mapping. 

2 Materials and Methods 

Study Site and Characteristics: 
The research site is situated at the Faculty of 

Agriculture Farm, University of Tripoli, Libya. The site 

is located in the western part of the farm, as shown in 

Figure 1. It is bounded to the west by the university 

road that leads to the southern (Eastern Gate, 

Salahuddin) entrance, to the north by a farm road that 

connects to the farm management building from the 

western gate, to the south by an olive grove, and to the 

east by a small uncultivated field. The study area 

extents approximately 13,000 square meters (1.3 

hectares). 

 
Figure (1) shows the location map of the study area 

The topography of the site is mostly flat, with a gentle 

slope gradient ranging from 0 to 2%, sloping east to 

west. Roughly half of the southern part of the field is 

covered with olive trees, while the northern half is 

lacking of vegetation. The soil in the study area is 

reddish-brown and free of gravel and stones (Ben-

Mahmoud, 1998). The soil formed on wind-deposited 
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parent materials, specifically continental sand deposits, 

and is characterized as deep, with a light sandy loam 

texture. It is weakly developed, indicative of a recently 

formed soil, and contains an Ochric surface horizon, 

according to the U.S. Soil Taxonomy classification 

system (Soil Survey Staff, 1999) with no subsurface 

diagnostic horizons due to limited soil-forming 

processes. 

The primary soil processes involve slight organic 

matter accumulation on the surface, resulting in the 

formation of an Ochric horizon and slight calcium 

carbonate movement within the soil profile (Ben-

Mahmoud, 1995; Selkhozpromexport, 1980). The site 

experiences a Mediterranean climate (Department.M, 

2000), and the soil is classified as Xerorthents, a 

common Mediterranean soil type, according to the U.S. 

Soil Taxonomy classification system (Soil Survey 

Staff, 1999). 

Soil Sample Collection and Preparation: 
The selection of an appropriate soil sampling method is 

a crucial preliminary step in the interpolation process. 

Several sampling methods are available, each with 

distinct advantages and limitations, including Transect, 

Random, Regular, Contour, Cluster, and Stratified 

Random sampling (Cochran, W.G., 1977). For this 

study, the regular sampling technique involves taking 

samples at fixed intervals across the study area to 

ensure balanced representation of spatial variability. A 

GARMIN60CSx GPS device was used to accurately 

locate sampling points by recording geographic 

coordinates (latitude and longitude) for each collected 

sample. Soil samples were collected using an auger at a 

depth of 0–30 cm. Each sample was labeled with its 

number, geographic coordinates, depth, and any 

observations. The samples were immediately 

transported to the laboratory for preparation and 

chemical analysis. In the laboratory, the samples were 

air-dried for 24 hours to remove excess moisture, 

sieved through a 2 mm sieve, and subsequently oven-

dried at 105°C for 24 hours to prepare them for 

chemical analysis, including soil pH, electrical 

conductivity (EC), and calcium carbonate content 

(CaCO₃%). 

Chemical Analysis of Soil Samples: 
Soil pH: The pH of each soil sample (71 samples) was 

measured using a 1:1 soil-water extract ratio, with a 

calibrated pH meter. The meter was calibrated using 

standard buffer solutions of known pH values to ensure 

accuracy.  

Electrical Conductivity (EC): The electrical 

conductivity was assessed using a 1:1 soil-water extract 

ratio, measured with an EC meter to determine salt 

concentrations within the samples The EC meter was 

calibrated with a 0.01 N KCl solution, which provides a 

reading of 1.4118 mS/cm at 25°C. 

Calcium Carbonate Content: The calcium carbonate 

content was determined using the back-titration 

method. An excess of diluted hydrochloric acid (HCl) 

was added to a measured soil sample, reacting with the 

carbonates. The unreacted acid was then titrated with a 

sodium hydroxide (NaOH) solution to determine the 

remaining acid, allowing for the calculation of 

CaCO₃% in the soil samples. (Rhoades, 1996) 

Preparation of Primary Data (Field and Laboratory 

Analysis Results): 
To ensure precise data processing and analysis, the 

primary field and laboratory results for each soil 

sample were thoroughly recorded in digital formats. 

Essential parameters, including sample number, 

geographic coordinates (latitude and longitude), pH, 

electrical conductivity (EC), and calcium carbonate 

content (CaCO₃%), were compiled into electronic 

tables using spreadsheet software. This systematic 

arrangement allowed efficient data analysis and whole 

integration into geographic information system (GIS) 

software for spatial analysis. Digitally structuring data 

made it easier to manipulate, visualize, and interpret 

using geostatistical methods. 

Each soil sample's pH was measured using a soil-water 

suspension, EC was determined to reflect the salt 

concentration, and CaCO₃% was calculated through 

back-titration, providing essential insights into the soil's 

chemical properties. This structured dataset worked as 

the foundation for conducting spatial interpolation, 

enabling a better understanding of soil variability 

across the study area. 

Spatial Statistical Analysis Using the IDW Method: 
Spatial analysis of the soil properties was performed 

using ArcGIS software, utilizing its Geostatistical 

Analyst extension. This tool facilitated both descriptive 

and spatial statistical analyses, which are critical for 

understanding the spatial distribution of soil 

characteristics across the study site. The software 

produced interpolated maps for pH, EC, and CaCO₃%, 

effectively visualizing variations within the study area. 

Additionally, the software evaluated the accuracy of 

these interpolations by employing cross-validation 

techniques and error statistics to assess the reliability of 

the predicted values (ESRI, 2012; Rosenbaum & Ell, 

1996). 

The spatial statistical approach allowed for the 

identification of patterns in soil variability, which are 

important in managing agricultural practices, 

optimizing resource use, and supporting precision 

agriculture efforts. 

Inverse Distance Weighting (IDW) Method: 
The Inverse Distance Weighting (IDW) method was 

used for the spatial interpolation of un-sampled points 

based on the values of neighboring measured points. 

IDW is a deterministic interpolation procedure that 

assumes that the values of un-sampled locations are 

more similar to nearby measured points than to those 

farther away. The method calculates the estimated 

value at an un-sampled location by assigning weights to 
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each surrounding measured point, with the weights 

being inversely proportional to the distance between the 

sampled and un-sampled points. 

 

The IDW equation is expressed as: 

 
Where:  

 Z(x):  The point to be estimated or predicted. 

 Z:  The measured point (known). 

 di2:  The distance between the measured point 

and the point to be estimated or predicted. 

 Wi: The weight. 

A number of factors influence the accuracy and 

reliability of the IDW method, including: Distance: 

The closer the sampled point is to the un-sampled 

location, the greater its influence on the predicted 

value. Power Parameter (p): The value of p 

determines how quickly the influence of a sampled 

point reduces with increasing distance. Greater values 

of p give more weight to closer points, resulting in a 

more localized interpolation. Number of Samples: The 

number of sampled points used in the estimation affects 

the accuracy of the predicted values. More samples 

provide a better estimation, especially in areas with 

high spatial variability. 

The IDW method is particularly useful when the 

distribution of sample points is dense and uniform, and 

when there is an assumption that spatial autocorrelation 

(the similarity of points over space) decreases with 

distance. However, the method does not account for 

directional trends or anisotropy in the data, which can 

be limitations in certain circumstances. Despite these 

constraints, IDW is widely used in environmental and 

agricultural studies for its simplicity and effectiveness 

in interpolating spatial data. 

In this study, IDW was applied to generate continuous 

spatial predictions of soil pH, EC, and CaCO₃%, 

allowing for the creation of detailed soil property maps 

that enhance understanding of the spatial distribution 

and variability within the study site. These maps are 

instrumental in informing land management strategies 

and optimizing agricultural inputs. 

3 Results and discussion 

Histograms were generated for each dataset to assess 

their distribution and determine whether they follow a 

normal distribution, which is important for the 

application of spatial interpolation techniques like 

Inverse Distance Weighting (IDW). Outliers were 

identified and mapped to assess whether they represent 

legitimate data variation or potential errors in the 

sampling process. The shape of each histogram was 

analyzed to check for multimodal distributions, which 

might indicate different groups or land uses within the 

dataset, such as water bodies, agricultural land, or 

forests A series of statistical metrics were calculated, 

including sample size, minimum and maximum values, 

mean, median, standard deviation, skewness, kurtosis, 

and variance, which helped confirm the distribution 

characteristics and the normality of the soil property 

data. Table 1 below summarizes the statistical analysis 

for key soil properties (pH, Electrical Conductivity 

(EC), and Calcium Carbonate content (CaCO₃%)) 

based on the 71 field samples, providing further details 

on their distribute 

Initiation of Interpolation Processes: 

To create continuous surfaces representing the spatial 

distribution of each soil property, interpolation was 

conducted using the Inverse Distance Weighting (IDW) 

method. The IDW method was applied through the 

Geostatistical Analyst extension in ArcGIS, which 

facilitated both descriptive and spatial statistical 

analysis, ultimately producing interpolated maps for 

pH, EC, and CaCO₃%. 

Property pH EC %CaCO₃ 

Number of 

Samples 
71 71 71 

Min 7.7 0.13 0.25 

Max 8.1 0.34 9.75 

Median 8 0.202 5.366 

Mean 8 0.2 6.25 

Skewness 0.17 0.7 -0.311 

Kurtosis 2.36 3,47 1.68 

Table 1: Statistical Summary of Analysis Data for All 

Field Samples 

The interpolation was performed using different sample 

sizes: initially, maps were generated using all 71 

samples, followed by maps using 75% (53 samples) 

and 50% (35 samples) of the total samples. This 

allowed an evaluation of how the number of samples 

impacted the quality and accuracy of the interpolated 

maps. 

Presentation of Interpolation Results: 

The results of the interpolation processes are presented 

as continuous surface maps for the key soil properties 

(pH, EC, and CaCO₃%). For each interpolation, 

statistical measures such as the Root Mean Square 

Error (RMSE), correlation coefficient (r), and 

coefficient of determination (R²) were calculated. 

These metrics were derived through Cross-Validation 

to assess the accuracy and uncertainty of the 

interpolation. 

Figures 2 through 19 show the results of the 

interpolation processes, which include nine maps (three 

for each property: pH, EC, and CaCO₃%). These maps 

were created using the three different sample levels (71, 

53, and 35 samples). Alongside the maps, correlation 

 
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graphs are provided to evaluate the relationship 

between the measured and interpolated values. 

The following tables (table 2a and 2b) presents the 

RMSE, correlation coefficient (r), and R² values for the 

different sample sizes used in the interpolation process. 

 

Number 

of 

Samples 

pH 

(RMSE) 

EC 

(RMSE) 

%CaCO₃ 

(RMSE) 

71 0.112 0.02 0.139 

53 0.11 0.021 0.145 

35 0.139 0.034 0.160 

Table 2a: RMSE Values for Interpolated Data 

Number 

of 

Samples 

pH 

(R² %) 

EC 

(R² %) 

%CaCO₃ 

(R² %) 

71 48 69 75 

53 50 71 70 

35 41 64 63 

Table 2b: R² Values for Interpolated Data 

The results in Tables 2a and 2b indicate that the 

interpolated maps for calcium carbonate (%CaCO₃) 

were the most accurate at all sample levels, with R² 

values ranging from 63% to 75%. In contrast, the maps 

for salinity (EC) displayed the least accuracy, with R² 

values as low as 6% when only 35 samples were used. 

The pH maps demonstrated moderate accuracy, with R² 

values ranging from 41% to 50%. 

One notable finding is that the smoothness of the 

interpolated surfaces was not significantly affected by 

the sample size for most properties, except for the 

salinity maps derived from only 35 samples, which 

displayed considerable inaccuracies. This suggests that 

the IDW method performs well for properties like 

calcium carbonate but may be less suitable for salinity 

mapping.  

4 Conclusions 

The Inverse Distance Weighting (IDW) method 

demonstrated strong performance for estimating 

calcium carbonate (CaCO₃) content, showing low 

RMSE (Root Mean Square Error) and high R² values 

even with smaller sample sizes. This indicates that 

IDW can be effective for properties like CaCO₃ with 

relatively uniform distribution patterns, making it 

suitable for similar applications in areas with consistent 

environmental conditions. The simpler spatial nature of 

CaCO₃ distribution means that IDW's distance-based 

weighting can accurately capture the variations without 

requiring more complex spatial models. 

However, IDW proved less effective for predicting soil 

pH values and especially for Electrical Conductivity 

(EC), where the spatial complexity is significantly 

higher. Soil pH often exhibits moderate spatial 

variability due to factors like vegetation, organic 

matter, and land management practices. In such cases, 

alternative methods like Kriging may offer better 

accuracy. Kriging's ability to incorporate spatial 

autocorrelation allows it to model the influence of both 

distance and spatial relationship, which can better 

capture the elusive variations in pH over space. 

For Electrical Conductivity (EC), the high spatial 

variability, often associated with localized salinity 

concentrations, presents a notable challenge for the 

IDW method. IDW’s limitations become evident as it 

struggles to accurately capture these fine-scale 

variations. In contrast, geostatistical methods such as 

Kriging, which incorporate spatial autocorrelation and 

account for variability, may be better suited for 

interpolating EC. These approaches can effectively 

handle sharp gradients and clustered salinity patterns, 

providing a more accurate representation of EC 

distribution. 

 

 
Figures (2, 3) 
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Figures (4, 5) 

 

 
Figures (6, 7) 

Interpolation results from 71 measured samples 

 

 

 
Figures (8, 9) 

 

 
Figures (10, 11) 

 

 
Figures (12, 13) 
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Interpolation results from 53 measured samples 

 

 

Figures (14, 15) 

 

 

Figures (16, 17) 

 

 
Figures (18, 19) 

Interpolation results from 35 measured samples  
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