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Mathematical modelling phenomena of most applied sciences is associated with 

second order nonlinear differential equations, which are not easily solvable. 

Therefore, the study of behavior of the solutions has attracted the attention of 

many mathematicians worldwide. In the present work, we discuss some clear 

assumptions for the boundedness of all solutions of some non-linear differential 

equations of second order. The main tools in the proofs of our results are 

Gronwall's inequality and Bonnet's Theorem. The results obtained here extend 

and/or improve some of well-known results in the literature. Further, some 

illustrative examples are provided to show the applicability of the new results. 
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1 Introduction  

      In the recent years, there has been an increasing 

interest in studying the qualitative theory of solutions of 

nonlinear differential equations of second order. This is 

due to the fact that the second order nonlinear 

differential equations play an important role in many 

areas such as mechanics, engineering, economy, control 

theory, physics, chemistry, biology, medicine, atomic 

energy and information theory (see Ademola & 

Arawomo (2011), Ahmed and Ali (2019), Amhalhil 

(2021), Elabbasy & Elzeiny (2011), Saad et. al. (2013), 

Salhin (2019), Wong and Burton (1965) and the 

references cited therein). Boundedness theory as a part 

of the qualitative theory of non-linear differential 

equations has been extensively discussed by this time. 

An excellent summary of the results related to the 

problem of boundedness of solutions can be found in 

Athanassov (1987), Bihari (1957), Saker (2006) and 

Tunc (2010).  One can also see the papers of Chang 

(1970), Graef and Spikes (1975), Hartman (1982) and 

Kroopnick (1995). 

Consider the second order nonlinear differential 

equation of the form:  

       ( ) ( ) ( ) ( )( ) ( )tptxgtqtxtr =+







•

•
           (1.1)                                                 

Where r , q  and p are real valued continuous 

functions on the half interval  ) 0,, 00  tt , r   is a 

positive function, g  is a continuous function on the 
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real line   and satisfies the condition  that

.00)(  xallforxxg  

     We recall that the solution )(tx  of Eq. (1.1) is called 

bounded if there exists a positive constant 
0M  such that 

0)( Mtx  for all 
0tTt  , This 

0M  may be 

determined for each solution. 

Wong (1966, 1967, 1968), Wong and Burton (1970), 

Waltman (1963) and Lalli (1969) discussed Eq. (1.1) in 

the case when  1)( tr  and derived many boundedness 

criteria. A primary purpose of the present paper is to 

contribute further in the direction of establishing 

sufficient conditions for all solutions of Eq. (1.1) to be 

bounded. As a consequence, we are able to extend and/or 

improve a number of well-known results in the literature. 

Besides, our new results will be illustrated by some 

examples. 
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    It will be convenient to write Eq. (1.1) as the 

equivalent differential system  
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       Before introducing our main results, we remind 

some basic results which are quite useful elements and 

in fact those results are interesting in their own rights. 

2 Auxiliary Results 

The next fundamental lemma, which is also known as 

Gronwall's inequality, will be needed. (see Bellman 

(1953), P. 35). 

Lemma 2.1 If u and v  are nonnegative real valued 

functions, c  is a positive constant and if  

dssvsuctu

t

t

)()()(

0

+ , 

then  

.)(exp)(

0














  dssvctu

t

t

 

The following result is very useful to simplify the proofs 

of the obtained results here. (Also known as The 

Bonnet’s Theorem, see Bartle (1976)). 

Theorem 2.1 Let Q and R be continuous functions on

 ,a b  with 0Q  . Then for some  ,c a b , 

i. If Q is increasing, then  

( ) ( ) ( ) ( ) ,

b b

a c

Q x R x dx Q b R x dx= 
 

ii. If Q is decreasing, then 

( ) ( ) ( ) ( ) ,

b c

a a

Q x R x dx Q a R x dx=   

3 Main Results 

Theorem 3.1. Suppose that 

(1)     )(xG  is bounded from below and →)(xG    

as →x  , 

    (2)     )(xr  is bounded from above and non- 

decreasing on  ),0t  as →x     

    (3)     )(tq  is positive and non-decreasing function 

on  ),0t , 

    (4)     
→

)(lim tR
t

. 

Then, every solution of Eq.
 
(1.1) is bounded. 

Proof. From the condition (1), there exists a constant 

01 k  such that 1)( kxG −
 
for all x , thus 

0)( 1 + kxG  
for all x  
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Now, define a function V
 
as follows: 
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From which it follows by (1.2) that 
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By the assumptions (1), (2) and (3) it can be shown 

easily that 

0,
)()(

)(
)( tt

tqtr

typ
tV 

•

 

Integrating the last inequality from 0t  to some 0tt   

we have 
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which leads to 
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But we have ( )1
2

1 2 + yy
  

for all y , then
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Since )(tq  is a non-decreasing function, then by 

Theorem 2.1, we conclude  
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where )(
)(2

1
0

0

2 tV
tq

k +=  is a positive constant, and as 

an application of Lemma 2.1, we get  
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By using (3.2) in (3.1), we obtain 

.
)(

)(
)()( 10

0

+  Bds
sr

sp
BtVtV

t

t

 

It is now notable that )(tV  is bounded. But 
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)(
)( 1

tr

kxG
tV
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Since )(tr  is bounded and then )(xG is bounded from 

which it follows that )(tx is bounded too. The proof is 

complete. 

Example 3.1: Consider the following differential 

equation: 

( ) )3.3(0,
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We note that 

(i)        00)( 4 = xxxxg ,

0,0
4

1
)()( 11

0

4 −==  kkxduugxG

x

→)(xG  as 

→x  

(𝑖𝑖)     𝑟(𝑡) =
1

𝑡 + 1
> 0, �̇� (𝑡) =

1

(𝑡 + 1)2
> 0  𝑎𝑛𝑑 

 𝑟(𝑡) ≤ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ≥ 𝑡0 > 0
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Hence by Theorem 3.1, all solutions of Eq. (3.3) are 

bounded. 

Theorem 3.2: Assume that conditions (1), (2) and (4) 

hold and assume in addition that  
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(5)       
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is a positive and non-increasing 

function on  ).,0 t   

Then every solution of Eq. (1.1) is bounded. 

Proof. From the condition (1), there exist 01 k  
such 

that 1)( kxG −  for all Rx , thus  

RxkxG +  allfor 01)(   
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which yields that

 
 3)( BtV

 
Hence )(tV is bounded. On the other hand we know 

that  

)(

)(
)( 1

tr

kxG
tV

+
  

Since  )(tr  is bounded, then )(tx is bounded too. The 

proof is complete. 

Example 3.2: Consider the following differential 

equation: 

[
𝑡2

𝑡2 + 1
�̇�(𝑡)]

∙

+ (
𝑡3𝑒−𝑡

1 + 𝑡2
+ 1) (𝑥9(𝑡) +
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) 

= (
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1 + 𝑡2
)

𝑠𝑖𝑛4𝑡

(cos2(2𝑡) + 1)
 , 𝑡 ≥ 𝑡0 ≥ 1      (3.6)

     

We note that 

(𝑖)   𝑥𝑔(𝑥) = 𝑥 (𝑥9(𝑡) +
6𝑥5(𝑡)

1 + 𝑥6(𝑡)
)

= 𝑥10(𝑡) +
6𝑥6(𝑡)

1 + 𝑥6(𝑡)
> 0 ∀𝑥 ≠ 0 

 and   →)(xG  as →x
 

(ii)       
( )

11)(,0
1

2
 )(,0

1
 )( 0222

2


+

=
+

=
•

tttr
t

t
tr

t

t
tr

  

(𝑖𝑖𝑖)   𝑅(𝑡) = ∫
|𝑝(𝑠)|

𝑟(𝑠)
𝑑𝑠

𝑡

𝑡0

= ∫
|𝑠𝑖𝑛4𝑠|

(cos2(2𝑠) + 1)𝑠2
𝑑𝑠

𝑡

𝑡0

≤ ∫
𝑑𝑠

𝑠2
𝑑𝑠

𝑡

𝑡0

= −
1

𝑡
+

1

𝑡0

,

lim
𝑡⟶∞

𝑅(𝑡) < ∞ 

(iv)  0
)(

1)(
)( =

−
= −tte

tr

tq
t  and ( ) 01)( −= −

•

tet t   

Hence by Theorem 3.2, all solutions of Eq. (3.6) are 

bounded. 

Remark 3.1: Theorems 3.1 and 3.2 extend and improve 

some of the related results of Burton and Townsend 

(1968), Olehnik (1972) & (1973), Greaf and Spikes 

(1975), Waltman (1963) and Wong (1967). 

4 Conclusion 

Throughout this paper, we concerned with the 

boundedness characteristic of a class of nonlinear 

differential equations. In this direction, we determined 

some new sufficient conditions for all solutions of 

equation (1.1) to be bounded. Further we introduced 

some illustrative examples. A remark was also included 

to show the evidence of our main results.  
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