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 This paper establishes the Finite Element Method FEM model of a practical Quartz 

beam resonator attached to a square diaphragm, which is used for measuring the 

pressure, based on sensing mechanism of a resonant Quartz pressure sensor. The 

relationship between the basic neutral frequency of the beam resonator and the 

measured pressure is calculated, analyzed and investigated by making use of the 

established FEM model. Some important qualitative and quantitative results on the 

natural frequency- pressure relationship of the beam resonator and the microsensor 

are obtained. Finally, based on the differential output scheme, a set of appropriate 

parameters of the sensing structure is determined, the frequency range is 

(661.839~892.208) kHz for the beam, which is located at the outer edge. 
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1 Introduction  

During the last years, many specialists in sensor 
technology have noticed the rapid development in 
resonant sensors. Resonant sensor is based on the 
special sensing structure, which is operating at it 
resonating state. And the measured quantities can be 
detected by using the resonant frequency (or the natural 
frequency), phase shift or amplitude of the vibrating 
output signal for the sensing component [5]. 

 The Quartz microstructure resonant sensors are noted 
for the advantages of a generalized resonant sensor, 
such as long term stability, high repeatability, low 
hysteresis and direct digital output. The mechanical 
properties of Quartz material are excellent, high 
strength, free from mechanical hysteresis, suitability to 
batch processing at low cost and the compatibility of 
mechanical and electrical properties. The dynamic 
characteristics of Quartz resonant sensors are much 
better than those of conventional sensors, due to their 
high working frequency [1]. In addition, the 
temperature characteristics of Quartz resonant sensors 
are much better than those of other important 
piezoresistive sensors. It is much easier to interface 
them with a microcontroller to develop intelligent 
sensors and the ability to batch process make low-cost,  

 

 

high performance sensors possible [1]. The design and  
construction of pressure sensors can be divided into on 
several different physical principles, which must be 
suitably selected to ensure that a sensor has the 
characteristics required. For instance, in certain cases a 
very high measurement accuracy will be needed, and in 
others, small dimensions and low weight; in the usual 
applications of weighing instruments, satisfactory zero 
stability is often necessary, and for pulse measurements 
it is all-important that the resonance frequency be high. 

2 Sensor structure and operating 

principle 

Figure 1 shows the structure of a Quartz resonant 

sensor for measuring pressure. The preliminary sensing 

unit is a square diaphragm. The measured pressure acts 

perpendicularly to the lower surface of the diaphragm 

and yields the stress. The final sensing unit is a beam, 

which is attached to the upper surface of the 

diaphragm. Moreover, the thickness of the beam h 

should be much less than the thickness of the 

diaphragm H, and the width of the beam should be less 
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than the half length of the diaphragm A. Based on the 

above structural feature, an appropriate initial stress is 

applied along the axial direction of the beam, which is 

almost identical with the stress of the square diaphragm 

at the same position. Thus, the natural frequency of the 

beam is varied with the applied pressure which acts on 

the square diaphragm. Therefore, the pressure will be 

measured via the change in the natural frequency of the 

beam. In addition, the beam resonator has a very high 

Q factor because it can be packaged within a vacuum 

housing. 

 
Fig.  1. Sensing structure of the pressure sensor. 

 

3     Stresses on the upper plane of square 

diaphragm 

 

According to the structural feature and the design 

demands for the pressure sensor, the square diaphragm 

is within the range of a small deflection. Then the 

differential equation can be written as follows [3]: 
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Where W (x,y (  Displacement of the square diaphragm 

under the applied pressure P, and Ds  flexural rigidity 

of the square diaphragm E Young's modulus ,μ poisson 

ratio. 

According to the built-in edge of the square diaphragm, 

its displacement can be assumed as follows:
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Where W max ratio between the maximum normal 

displacement and the thickness of the square 

diaphragm, and A, H the Half-length and the thickness 

of the square diaphragm. 

Substituting Eq. (2) into Eq. (1), the displacement 

W(x,y) can be obtained.  Then stresses on the upper 

surface of the square diaphragm can be obtained. 
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Where σx(x,y),σy(x,y) Stresses of the square 

diaphragm. 

 

4     Finite element model of the beam 
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 Fig. 5 Mathematical model of the beam 

 

Figure 5 shows the mathematical model of the beam. 

The vibrating displacements of the beam at an arbitrary 

point are as follows: 
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Where u (s,z,t)-w (s,t( Axial and normal vibrating 

displacements of the beam in Cartesian coordinate of 

the beam, and s,z Axial and normal coordinates of the 

beam in Cartesian coordinate of the beam. 

Energy expressions of the beam resonator are as 

follows  

The potential energy 
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Where U Potential energy of the beam, and Sis the 

integrated length of the beam and b the width of the 

beam. 

The kinetic energy 
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Where T   Kinetic energy of the beam, and  


 density 

of the sensing structure. 

In addition, the initial potential energy of the beam, 

which is caused by 
)(0 ss

, is 
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From Fig (1) and equation (3), according to the above 

analyses, 
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Where σs0(s) Initial axial stress of the beam. 

  The following relation for the error cases: 

( ) ( ) ( ) ( ) ( )yxsyxss yxs ,cos,sin 220  +=
(9) 

Then the total potential energy of the beam is 

U U UT = − 0                                                    (10) 

Where U0 Initial potential energy of the beam, which is 

caused byσs0(s), and UT Total potential energy of the 

beam. 

 

In Eq. (7), if σs
0 (s) is a constant σs

0 the analytic 

relationship between the basic natural frequency and 

the initial axial stress can be directly obtained: 
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Where ω in [rad/s], w (s    ( Natural frequency and its 

corresponding vibrating shape along the axial direction 

of the beam. 

However, from Eqs. (3), (8) and (9), 
( )ss

0
is varying. 

Therefore, the finite element equation of the beam 

resonator can be written as follows:  

( )2 0− =K M a
                                         (12) 

Where K-assembly stiffness Matrix, M-assembly Mass 

Matrix, the assembly nodal vector, consisting of all aj. 

 

From Eqs. (11), (12), natural frequencies and the 

corresponding vibrating shapes of the beam resonator 

can be obtained. 

5     Detection circuit system for pressure 

sensor 

As the dimension of the resonant beam and the 

vibration amplitude is very small, the pickup signal is 

very weak and is submerged in the strong background 

noise [3]. To extract the weak vibrating signal, a 

detection circuit system is designed based on the lock-

in amplification principle. Tests for the pressure sensor 

characteristics are realized by using this principle. 

Figure 2 is the block diagram of the circuit system. 

 

 
Fig .2. The block diagram of the detection circuit system 

 
6    Calculation and discussion 

In this paper, the main investigations are the varying 

laws of the pressure -frequency relationship for the 

beam resonator as the thickness H for the square 

diaphragm and the corresponding length of the beam L 

are varied. In order to get some generalized results of 

the Pressure -frequency relationship for the beam 

resonator, some related parameters are selected as 

follows: 

The sensor is made of Quartz, E 10102.7 = Pa,  
3102.2 =  kg/m3,   =0.17. Moreover, the total 

element number of the beam N is 4 for FEM 

calculation. 

The half-length and thickness of the square diaphragm 

are A=2.5 mm and H=0.14 mm, respectively. In 

addition, the width and thickness of the beam are b=40 

µm and h=6µm. 

7       Investigation of the frequency – pressure 

relationship 

 

Define )(Pf , )0(f  as the basic natural frequency of 

the beam for pressure P and for pressure 0=P ; f

)0()( fPf −=  as the variation of the basic natural 

frequency of the beam within ( )P,0 and 

)0(/)]0()([ ffPf −=  ]%[  as the relative variation or 

the sensitivity of the basic natural frequency for the 

beam within ( )P,0  in 
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A- Location of beamon the upper plane of 

the square diaphragm 
 

 
Fig. 3.Ideal locations of the beam at the diaphragm 

 

Table I gives the beam’s relationships between the 

frequency and the measured Pressure as the beam being 

located at different positions, and Table II gives the 

frequency variation and sensitivity of the beam 

corresponding to Table I. 

From the Tables, some results can be obtained as 

follows: 

As the beam is located at different positions of the 

upper plane of the square diaphragm along its radial 

direction, the sensitivity of the beam resonator is 

different. The best location for the beam resonator is at 

the outer edge for the square diaphragm, where the 

beam’s sensitivity reaches the biggest, as shown in 

table II. 

TABLE I. THE FREQUENCY OF BEAMAS A=4 ,L=100 µ ,     
H=0.15  

 

 

 

      TABLE II. THE VARIATION FREQUENCY AND SENSITIVITY OF BEAM 

 

b-The thickness of the square diaphragm 

The thickness of the beam h should be much less than 

the thickness of the diaphragm H, figure 4, Tables III 

and IV show the relationships between the frequency of 

beam and the pressure for different thicknesses of the 

diaphragm H. 
 

 

Fig 4. The relationships between the frequency of  beam  and the 

pressure 

TABLE III.  THE VARIATION FREQUENCY (KHZ) OF BEAM  FOR THE 

DIFFERENT H L 

 

 

TABLE IV. THE SENSITIVITY OF  BEAMFOR  DIFFERENT H  L 

Pressure 

(Pa) 

Location of the beam 

(1.3,2.3) (2.5,3.5) (4,5) 

0.0 661.839 661.839 661.839 

0.1 656.432 663.693 697.839 

0.2 629.549 665.265 722.839 

0.3 620.152 667.413 747.839 

0.4 609.602 669.682 771.708 

0.5 599.773 671.830 792.708 

0.6 588.994 673.174 812.708 

0.7 576.384 675.492 832.708 

0.8 567.840 677.519 852.708 

0.9 558.957 679.384 872.208 

1.0 547.417 681.283 892.208 

Position(mm) (1.3,2.3) (2.5,3.5) (4,5) 

Sensitivity -17.2% 2.9 % 34.8 % 

Variation(kHz) -114.422 19.444 230.369 

H 

(
410− m) 

(A
310− m, L

310− m) 

(5.0,1.12) (5.0,1.1) (5.0,1.08) 

1.3 285.877 285.473 285.937 

1.4 275.448 275.228 275.716 

1.5 256.259 256.406 256.358 

1.6 218.610 218.135 218.520 

1.7 172.831 172.194 172.004 

H 

(
410− m) 

(A
310− m, L

310− m) 

(5.0,1.12) (5.0,1.1) (5.0,1.08) 

1.3 42.4% 39.5% 36.7% 

1.4 37.5% 34.9% 32.6% 

1.5 33.4% 31% 28.8% 

1.6 29.9% 27.8% 25.7% 

1.7 27% 25% 23.1% 

510
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Fig 5. The relationships between  sensitivity of Beam  and the 
thickness of the diaphragm H 

From the above Tables and Figures, the following 

results can be obtained: 

The relative frequency variation (sensitivity) is 

increased as the thickness of the square diaphragm H 

decreasing for beam. 

Then, the length of the beam L should be increased or 

the diaphragm thickness H should be decreased if the 

relative frequency variation (sensitivity) of the beam 

resonator is o be increased within a measurement range 

of pressure. Moreover, as the measurement range is 

narrow, the relative frequency variation (sensitivity) of 

the beam resonator should be high however as the 

measurement range is wider, the relative frequency 

variation (sensitivity) of the beam resonator should be 

narrower. 
8 Design and optimized parameters for pressure 
sensor 

Based on the differential output scheme of the Quartz 

resonant pressure sensor and some related criteria, a set 

of appropriate parameters for the above sensing 

structure of the sensor is determined for measuring the 

pressure, Table V gives the optimized parameters for 

the Quartz resonant pressures sensor. 

 
TABLE V. THE OPTIMIZED PARAMETERS FOR THE 

PRESSURE SENSOR 

 

The half length of square A 2.5 mm 

Thickness H 0.14 mm 

Length of beam L 100µm 

Width of beam b 40 µm 

Thickness oh beam h 6 µm  

Frequency range for beam (661.839~892.208) kHz 

9 Conclusions 

The Design, modeling and simulation for a resonant 

Quartz pressure sensor are carried out in this paper. The 

elementary sensing component of the sensor is the 

square diaphragm, and its final sensing component is 

the beam resonator which is attached to square 

diaphragm.  

The main results obtained here are  The finite element 

method model of the above Quartz complex sensing 

structure is established, based on its operating 

mechanism,  Based on this model, the relationship 

between the basic natural frequency of the beam 

resonator and the applied pressure  are calculated, 

analyzed and investigated, in detail, the sensitivity of 

the basic natural frequency to the measure pressure for 

the beam resonator will be increased as the thickness of 

the square  diaphragm His decreased or the length of 

the beam is increased, The best selection for a   beam  

when located at the outer edge of the square diaphragm, 

and the frequency range is (661.839~892.208) kHz for 

the beam. 
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