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Abstract 

In this paper, the driving forces are represented by  linear and nonlinear principal 

components. In order to extract such forces, dimension reduction is applied using spectral 

decomposition technique. The most contributing lower order principal components are 

retained to represent the driving forces. The modeling of these forces is achieved in 

comparison to the Gaussian one.      
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1. Objectives and Methodology 

The objective of this paper is to discover the descriptive characteristics and driving forces of 

the multidimensional DAX portfolio of nine financial factors. The study lays the light on the 

most influencing factors within the portfolio. Several techniques are utilized, among them are 

descriptive methods, visual aids and some algebra.  

2. The Data and Descriptive Tools 

The data under consideration consist of 605 points of DAX portfolio
1
 comprising of nine 

financial factors as listed below 

                                                           
1
 The source is the comdirect bank at www.comdirect.de 
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  : the ratio of share holders’ equity to total assets  

  : the ratio of dept to total assets 

  :the ratio of total liability to shareholders’ equity 

  :the ratio of liquid assets to total assets 

  :the ratio of net income to shareholders’ equity  

  :the ratio of net income to total assets 

  :the ratio of net income to sales 

  :the ratio of sales to total assets 

  :the ratio of dividends per share to earnings per share 

For a summary of descriptive statistics of the factors, see Figure 1. 

 

3. Modeling Characteristics 

There is a lot of modeling characteristics that can be consider in modeling the financial factors 

as well as their driving forces.  We restrict ourselves to the Gaussian model for comparison 

purposes. 

 

 Figure 1 : Box plots of the financial factors together with  descriptive characteristics such as 

the mean  , the standard deviation  , the coefficient of skewness    and coefficient of kurtosis 

  .   
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 3.1 Gaussian Distribution 

 A random variable   is said to be distributed as Gaussian with mean   and variance    if and 

only if its probability density function is defined as 
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The distributions is completely defined by its mean and variance, [1].   

 

Figure 2 : The density function of Gaussian distribution with mean     and standard 

deviation    .  

and is considered to be the best known and most important with its amazing characteristics of 

symmetry (=0) and mesokurtosis (=3), see Figure 2. 

 

Figure 3: The density function of  a bivariate  Gaussian distribution with mean vector 

  [   ]  and dispersion matrix      [
      
       

]  

A multivariate Gaussian for a  -dimensional vector   [          ]
 
 with mean vector 

  [          ]
 
 and a dispersion matrix   [   ]     

 is given by 
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[2] .  See Figure 3. 

3.2 Diagnostics 

For the diagnostic of Gaussianity of the underlying factors, we apply quick indicative  tools 

namely, the quantile-quantile plot, qq-plot,  in its   univariate and multivariate  versions.  

3.2.1 Univariate qq-Plot  

The qq-plot is constructed by plotting the empirical quantile of the original data against the 

theoretical quantiles of the Gaussian distribution, namely the set of pairs   
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))           . 

See Figure 4. 

 

Figure 4: The qq-plots of each of the financial factors, the assumption of Gaussianity is 

violated by almost all factors except probably   . 

Under the Gaussianity assumption, the univariate version of the Gaussian qq-plot is associated 

with the population correlation test   

                   

that gives an indicative of the associateship between the empirical quantiles and the Gaussian 

quantiles. In order to guarantee a strong associateship the hypothesized  value     should be 

positive and large enough.  The test is based, originally, on the test statistic  . Due to the 
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complicated sampling distribution of the test statistic, it is replaced with a modified Gaussian 

alternative for which under the null hypothesis [1], 
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3.2.2  Multivariate qq-Plot    

With analogy to the univariate version, the multivariate version the qq-plot is obtained by 

plotting the pairs 
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))            

of the quantiles of the squared Mahalanobis
2
 distance   against the quantiles of chi-square 

distribution   ,[3], see Figure 5. For details of related tests we refer to [6]. 

 

 Figure 5: The multivariate qq-plot of the DAX portfolio, the assumption of multivariate 

Gaussianity is not tenable. 

The modeling characteristics of the  univariate factors as well as the multivariate  portfolio are 

shown on Figure 4 and Figure 5 .As the  points do not lie on a straight line, the  Gaussianity 

assumption is violated which seem to be a characteristic of the underlying financial data. 

 

                                                           
2
 Referred to the Indian scientist and applied statistician Prasanta, M., Mahalanobis (June 29, 1893-June 28, 

1972).  
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4. Spectral Decomposition 

Spectral decomposition is achieved by decomposing the positive nonsingular matrix    into 

two matrices, namely,  a diagonal one       (           )  and an orthogonal one 

  [  ]   
  as follows. 

         

The procedure has to be achieved in two steps, firstly, find the unknown eigenvalues        

by solving the  -degree characteristic equation  

|       |   . 

Secondly, solve the equation  

|       |     

to find the unknown eigenvectors    [   ]    
           corresponding to the positive 

eigenvalues             , [4]. 

 

5. The Driving Forces 

The first step needed for discovering the driving forces and hence to extract the ones with 

most variation is to reduce the multidimensionality of the underlying portfolio to a lower 

dimensional coordinate system using the above procedure of spectral decomposition to the 

underlying covariance matrix.  

5.1  Extracting the Linear Forces 

The techniques is to apply spectral decomposition to the covariance of the centered data 

matrix    [          ]
 
. 

   
 

 
(   )(   )  

Then project   on the reduced  -dimensional coordinate system  ( )     corresponding to 

the few  ’s with  higher values.  
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     ( )     

This reduces and interprets the dispersion matrix using  a few linear combinations called linear 

principal components,    [          ]
 
      with uncorrelated components,  

   (     )   
                 . 

The desired principal component are obtained by excluding the components with lower 

contribution to the total variation, [9], [11]. 

5.2  Extracting the Nonlinear Forces 

A nonlinear form of the principal components analysis is the kernel principal components. The 

method applied for extracting the nonlinear driving forces is the Kernel principal components 

technique, it is applied in three steps; firstly, using one of the known kernel functions, say 

Gaussian kernel,  project the portfolio data matrix   into non-linear orthogonal matrix  ( ) 

in a high dimensional functional space, called Hilbert space  .  

          

Secondly, apply spectral decomposition to the covariance matrix of the centered kernel 

matrix  ( ).  

   
 

 
 ( ( )    )( ( )    )    

  Thirdly, project   into a reduced  -dimensional orthogonal space which ends to the desired 

kernel components,  [5], [7]. 

The components that have most contribution to the total variation are represented by the lower 

order principal components. For details about principal component retention we refer to [8].  

It is shown from Table 1. that the first three linear principal components can express more 

than     of the total variation and hence can be retained as a lower dimensional coordinate 

system.  
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Table 1. Percent of Variation explained by the first    principal  components  

 

Type of kernel 

  

1 2 3 4 5 

Linear 51.9757 74.4147 86.4100 94.9952 97.0736 

Polynomial 39.8324 62.0023 78.8899 87.7216 92.7442 

Gaussian 13.7894 27.5788 41.3682 55.1576 68.8334 

 

The nonlinear structure also can be  represented by the first three kernel components using a 

polynomial kernel of degree two, these components  explain about      of the total variation 

and can be used as a lower dimensional coordinate system for the nonlinear structure of the 

underlying portfolio. Therefore,  the nine dimensional coordinate system of the original factors 

can be reduced to three-dimensional coordinate system of principal components by projecting 

the data matrix  onto the retained eigen-direction of the largest variance. 
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The most influencing variable in the first linear principal component is    whereas for the 

second and third components the most influencing variables are    and    respectively. A qq-

plot of the univariate and multivariate principal components is given on Figure 6(a) and Figure 



Sirte University Scientific Journal 

                                                                                                                            Vol. 4, No. 1, June  2014 
 
 

9 
 

6 (b). A  violation of the Gaussianity assumption as well as skewness appear in both the 

univariate and multivariate cases.   

 

Figure 6 : (a) The univariate  qq-plot of single principal components and (b) The multivariate 

qq-plot of the first three principal components. 

 

6. Conclusion 

Two types of variation involved in the multidimensional data are considered, linear and 

nonlinear. On this basis, two techniques have been applied,  the linear principal components to 

extract the linear  forces and the kernel components for extracting the  nonlinear ones. In our 

data, the linear variation may be represented by the first three linear  principal components 

which express more than     of the total variation, whereas the first three kernel principal 

components express about     of the total variation and may be retained to represent the 

portfolio.  

From the above modeling procedures, results agree with the violation of the Gaussian 

assumption by all original financial factors and underlying principal components. The 

modeling characteristics show that skewness and platy-kurtosis  a common characteristic of 

the driving forces. Hence, the conclusion from the above study is that the modeling 

characteristics of the driving forces are away from the Gaussian assumptions and are among 

the asymmetric and non-mesokurtic modeling environment.  The most influencing factors in 

the total variation are;   , the ratio of sales to total assets,   , the ratio of dividends per share 

to earnings per share, and   , the ratio of net income to shareholders’ equity. 
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