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Abstract 

The Kalman filter (KF) is a set of mathematical equations that provides an efficient computational 

(recursive) means to estimate the state of a process, in a way that minimizes the mean of the squared error. The 

filter is very powerful in several aspects: it supports estimations of past, present, and even future states, and it 

can do so even when the precise nature of the modeled system is unknown.  In this paper, the mathematical 

model of a continuous and discrete flow boiling system has been developed. Kalman filtering was used to 

estimate the states of a linearizead boiling system. Extended Kalman filtering (KF)  was applied to estimate the 

states of the nonlinear boiling system. It follows from the obtained results that the KF and EKF do the job. KF 

gives a good result due to optimality and structure. Since it is difficult to install sensors inside the boiler, it will 

be more convenient to design a state feedback controller using the Kalman filter for the system to track some 

desired set points (e.g.. Temperature, pressure, etc). The results were presented using MATLAB-Simulink 

simulations. 

 

Keywords: Induction machine, diagnostics, current spectrum, harmonics. 

 

1. Introduction 
 

Kalman filtering is a state estimation technique invented in 1960 by Rudolf E. Kálmán [1,2,3,4.9 ]. 

The Kalman filter had already many “spectacular” applications; for example, it was crucial for the 

Apollo flights to the moon. It gives good results in practice due to optimality and structure, 

convenient form for online real time processing, easy to formulate and implement given a basic 

understanding, and measurement equations need not be inverted. Although there are many 

presentations of Kalman filtering in the literature [10,11] , they are usually focused on particular 

problem domains such as linear systems with Gaussian noise or robot navigation, which makes it 

difficult to understand the general principles behind Kalman filtering. This paper describes the 
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procedure of using Kalman filtering to estimate the states of a linear and nonlinear mathematical 

model for a continuous flow boiling system. The nonlinear mathematical model is developed from 

the mass and heat balance equations. The system was linearized around the operating point using a 

Taylor approximation and Simulink method. 

1.1 The Phenomenon of Boiling System [1] 

 

The phenomenon of boiling system is such that the temperature responds only to the total pressure 

P and the vapor flow only to the heat flux q. This leads to the more convenient mode shown in 

Fig.1-1. The heat balance is used to establish the vapor flux, whereas the system pressure P 

indicates the temperature. In most cases the differential term 
)(VcT

dt
d

 is very small in 

comperation with q and can be neglected. In summary, the only way to change the temperature in 

case of boiling a single component liquid, is to change the total pressure. Changing the heating 

rate, this changes only the rate of evolution of vapor. The cause-and-effect relationships for single 

boiling fluid can be status as: 

 

 

 

       

 

 

 

 

 

 

 

Figure 1-1. Continuous Flow Boiling system. 

 Pressure (P) establishes the boiling temperature (T); 

 Heat flux (q) establishes the vapor rate ( v ). 
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The aim of this paper is to estimate the states of a continuous flow boiling system using Kalman 

Filtering. The paper is organized into five sections, a reference and an appendix parts. The outline 

of the paper is as follows: 

Section 2, describes the procedure for developing the non-linear mathematical model for a 

continuous flow boiling system employing the mass and heat balance equations and the 

linearization of the identified model around the operating point using a Taylor approximation.  

Section 3, introduces the theory of the Kalman filtering and extended Kalman filtering.  

In section 4, the simulation results of the measurement update and time update equations of a 

linear and nonlinear system using Matlab, and simulink are made. 

Section 5 concludes the results of our paper, and gives future plans. 

 

2. Mathematical Model 

 

2.1 Procedure for Assembling the Non-Linear Model 

 The procedure for assembling the nonlinear model is as follow: 

A. Boundary values: 

1. Inlet flow: 1F ; 

2. Inlet temperature: 1T ; 

3. Jacket steam pressure: SP ; 

4. Exit pressure: 0P ; 

B. Equations: 

1. Valve:                    EE vPPPKv  )( 0                  (2-1) 

2. Gas law:               PRTmPV G                    (2-2) 

3. Vapor mass balance:   GE
G mvv

dt

dm
                   (2-3) 

4. Boiling point:                TPfT  )(                  (2-4) 

5. Jacket heat:                  qTTUAq S  )(                  (2-5) 

6. Heat balance: 

               vvcTqcTFVcT
dt

d
 )()( 11                   (2-6) 
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7. Mass balance on liquid:    VvF
dt

dV
 1                  (2-7) 

8. Gas volume:                   GG V
V

VV 


0                  (2-8) 

 

Figure 2-1. Model for continuous flow Boiling system. 

 

 

The equations described above are assembled in Fig.2-1. 

2.2    Building the Non-Linear Model 

The mathematical model (in MIMO case) could be built up considering the following variables: 

 Input variables: 

               Inlet temperature:             u1=T1; 

               Jacket temperature:          u2=TS;  

  Exit pressure:                  u3= P0; 
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 State Variables: 

                       Vapor pressure:                  X1=P; 

                       Boiling temperature:           X2=T; 

                       Vapor mass:                       X3= mG;  

 Output variables: 

                       Temperature:                     TXY  21 ; 

                       Outlet vapor flow rate:       EvY 2 ;    

                       Vapor mass                       GmXY  33 ; 

 Constants: 

          R=1.98moles/ 3ft ,c1=13.96 )./( CKmolKJoule  ,c2=-5210.6 )./( CKmolKJoule     

,VG=30000 3ft  , λ=9717 PCU/mole, UA=1700,  K=5.7 .)sec./(3 Kmolft  

While the general form of a state space description of a mathematical model is: 

uDXCY

uBXAX






        ,                                                                                            (2-9) 
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











































Gm

T

P

X

X

X

X

3

2

1

      ,





































0

1

3

2

1

P

T

T

u

u

u

u S   and

































P

v
T

Y

Y

Y

Y E

3

2

1

.            (2-10) 

From the above equations, the state space representation of the non-linear model will be : 
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21 XY   

)( 3112 uXXKY     .                                                                                 

PXY  13
 .                                                                                                      (2-11) 

2.3    Linearization of the Non-Linear Model 

Considering the importance of the operating point [1], the following conditions will be applied to 

the system: 

 The liquid level is maintained at a fixed position by a level controller. This makes V 

and VG constants and also the feed flow EvF 1 ; 

 The liquid is initially cold and heated up to its boiling point. After boiling starts, the 

pressure rises to its equilibrium level, raising the temperature to a higher value. 

At equilibrium point (operating point) the vapor mass will be constant, therefore: 

0)(  EG vvm
dt

d
  ,                                                                                     (2-12)                                                                                                  

As a result, the following numerical results are obtained:  

           u1o=T1=15 ºC                     X1o=P=1.68301 atom 

            u2o=TS=150 ºC                   X2o=T=114.71 ºC                  (2-13) 

           u3o=P0=1 atom                   X3o=mG=65.7711 (unit of mass), 

Using the Taylor series expansion and Matlab simulink, the state space representation of the 

linearized model is obtained: 
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2.4  Discretization of the continuous Model 

  The discrete state space representation of the boiling system: 
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3. Kalman Filtering Theory 

3.1 Kalman Filtering 

A Kalman filter is an optimal estimator - i.e. infers parameters of interest from indirect, inaccurate 

and uncertain observations. It is recursive so that new measurements can be processed as they 

arrive. If all noise is Gaussian, the Kalman filter minimizes the mean square error of the estimated 

parameters. Given the mean and standard deviation of noise, the Kalman filter is the best linear 

estimator [5,6,7].  Our model: 
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           Where: 

_ 0X  is a Gaussian random variable with mean 0X and covariance 0P . 

_ K  is a zero mean white noise random sequence with covariance Q . 

_ Kv  is a zero mean white noise random sequence with covariance R . 

_ 0X , K  and Kv  are mutually independent. 

If x, and z are jointly Gaussian random vectors with  

__

][ xxE   , and  
__

][ zzE   

                                             





























































zzx

xzx

T

PP

PP

zz

xx

zz

xxE __

__

__

__

                        (3-2) 

Then the conditional distribution of x given z is: 

),()/( // ZXZX PxNzxP
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  
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Given the initial state and covariance, we have sufficient information to find the optimal state 

estimate using the Kalman filter equations. The Kalman filter equations can be obtained as 

follows: 

                        Given:    )(

00 ,~  PXX o  

 The Measurement Update: 
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3.2 Extended Kalman Filtering 

Many practical systems have non-linear state update or measurement equations. The Kalman filter 

can be applied to a linearized version of these equations with loss of optimality [8]. 

Our model: 
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4. Simulation and Results  

We considered the following values for our process and measurement noise: 

 

 ,    

 

The Kalman filtering equations were simulated using the Matlab Simulink (A.1). with the 

following initial states and covariance: 

 

 

                      ,     

4.1 Simulation of the Linear Model Using KF 

Using the Kalman filter equations (3-4), and (3-5), the linearized model of the boiling system was 

simulated and the following results were obtained as shown in figures (4-1),(4-2), and (4-3).  
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            Figure 4.1 The actual and estimated response for the linear states 
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            Figure 4.2 The error between the actual and estimated of the linear states 
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            Figure 4.3 The a-prior and a-posteriori covariance for the linear states  

Table (4-1): The first five iterations for KF simulation 

 Actual Values Estimates Values Error a-Post. Cov. 
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k X1 X2 X3 X1 X2 X3 
11P  22P  

33P  

0 1.326    12.968    27.450 1.452 13.902 28.366 0.023 0.911 0.954 

1 2.126    21.399 45.282 2.195 21.925 45.585 0.023 0.494 0.660 

2 2.491 27.004 57.110 2.503 27.236 57.064 0.023 0.371 0.608 

3 2.914 31.298 66.192 2.948 31.530 66.261 0.023 0.320 0.594 

4 2.731 33.955 71.741 2.668 33.888 71.378 0.023 0.295 0.588 
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5 3.760 37.381 79.098 3.913 37.868 79.790 0.023 0.023 0.585 

 

As it can seen from the above figures and table, the Kalman filtering gives a good results due to 

optimality and structure. 

4.2 Simulation of the Non-Linear Model Using EKF 

Using the extended Kalman filter equations (3-7), and (3-8), the nonlinear states of the boiling 

system were estimated and the following results were obtained as shown in figures (4-4), (4-5), 

and (4-6).  
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            Figure 4.4 The actual and estimated response for the nonlinear states 
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            Figure 4.5 The error between the actual and estimated of the nonlinear states 
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            Figure 4.6 The a-prior and a-posteriori covariance for the nonlinear states  
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Table (4-2): The first five iterations for EKF simulation 

 Actual Values Estimates Values Error a-Post. Cov. 

 Vapor 

Press. 

Boiling 

Temp. 

Vapor 

Mass  

Vapor 

Pressure 

Boiling 

Temp. 

Vapor 

Mass 

Vapor 

Pressure 

Boiling 

Temp. 

Vapor 

Mass 

k X1 X2 X3 X1 X2 X3 
11P  22P  

33P  

0 1.152 8.223 28.396 1.508 12.849 26.014 0.025 0.909 0.909 

1 1.889 11.810 48.993 1.476 14.696 33.716 0.024 0.491 0.653 

2 2.255 13.397 64.644 1.998 14.935 49.762 0.024 0.425 0.600 

3 2.715 14.510 78.166 2.276 14.285 64.396 0.025 0.420 0.574 

4 2.595 15.087 88.470 2.749 14.889 78.079 0.026 0.358 0.581 

5 3.687 16.103 100.522 2.530 14.624 88.125 0.026 0.317 0.590 

 

As it can seen from the above figures and table, the extended Kalman filtering gives a good results 

due to optimality and structure. 

 

5. Conclusions  

The mathematical model of a continuous flow boiling system has been developed. Using Kalman 

filtering, the states of a linearizead boiling system were estimated. The results were presented 

using MATLAB-Simulink simulations.  Using Extended Kalman filtering, the states of  the 

nonlinear boiling system were estimated the results were presented using MATLAB-Simulink 

simulations. It follows from the obtained result that the KF, and EKF do the job. KF gives a good 

result due to optimality and structure. Since it is difficult to install sensors inside the boiler, it will 

be more convenient to design a state feedback controller using the Kalman filter for the system to 

track some desired set points (e.g.. Temperature, pressure, etc).  
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Appendix 

 
A.1.1 Simulation of the linearized continuous flow boiling system using the Kalman filtering. 
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A.1.2 The simulink model of the Plant Equations  
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A.1.3 The simulink model of the Kalman Filter Equations 
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