Certain Subclass of Meromorphic Valent Functions Defined by Convolution with Positive Coefficients

A. A. Hussain ${ }^{1}$, A. O. Mostafa ${ }^{2}$ and M. K. Aouf ${ }^{3}$
e-mail: aisha84_hussain@yahoo.com
${ }^{I}$ Department of Mathematics, Faculty of Education, Sirte University, Libya
${ }^{2,3}$ Department of Mathematics, Faculty of Science, Mansura University, Egypt

Abstract

In this paper we introduce and study a subclass $R_{p}(f, g, \alpha, \zeta, \beta)$ of meromorphic p - valent functions in $\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<1\}$. Therefore we obtain some coefficient estimates, distortion theorems, convex linear combinations and radius of convexity for functions belonging to the subclass $R_{p}(f, g, \alpha, \zeta, \beta)$. Also we derive several interesting results involving Hadamard product (or convolution) of functions belonging to this subclass.

Keywords: p - valent Meromorphic functions, Convolution.

1. Introduction

The class of meromorphic functions which are analytic and p-valent in $\mathbb{U}^{*}=\{z \in \mathbb{C}: 0<|z|<$ $1\}=\mathbb{U} \backslash\{0\}$ and has the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{n=0}^{\infty} a_{p+n} z^{p+n}, \quad\left(a_{p+n} \geq 0, p \in \mathbb{N}=\{1,2, \ldots\}\right) \tag{1.1}
\end{equation*}
$$

is denoted by \sum_{p}^{*}. For $f(z)$ in this form and $g(z) \in \sum_{p}^{*}$ given by

$$
\begin{equation*}
g(z)=z^{-p}+\sum_{n=0}^{\infty} b_{p+n} z^{p+n}, \quad(p \in \mathbb{N}), \tag{1.2}
\end{equation*}
$$

the Hadamard product (or convolution) of $f(z)$ and $g(z)$ is given by
$(f * g)(z)=z^{-p}+\sum_{n=0}^{\infty} a_{p+n} b_{p+n} z^{p+n}=(g * f)(z)$.
For $0 \leq \alpha<p, 0<\beta \leq 1, \frac{1}{2} \leq \zeta \leq 1, p \in \mathbb{N}$ and $g(z) \in \sum_{p}^{*}$ we say that $f(z) \in R_{p}(f, g, \alpha, \zeta, \beta)$ if it satisfies:

$$
\begin{equation*}
\left|\frac{z^{p+1}(f * g)^{\prime}(z)+p}{(2 \zeta-1) z^{p+1}(f * g)^{\prime}(z)+(2 \zeta \alpha-p)}\right|<\beta\left(z \in \mathbb{U}^{*}\right) . \tag{1.4}
\end{equation*}
$$

$$
g(z)=z^{-p}+\sum_{n=0}^{\infty}\left(\frac{p+\lambda n}{p}\right)^{k} z^{p+n},\left(\lambda \geq 0, p \in \mathbb{N}, k \in \mathbb{N}_{0}=\mathbb{N} \backslash\{0\}\right)
$$

Putting $g(z)=z^{-p}+\sum_{n=0}^{\infty}\left(\frac{p+\lambda n}{p}\right)^{k} z^{p+n},\left(\lambda \geq 0, p \in \mathbb{N}, k \in \mathbb{N}_{0}=\mathbb{N} \backslash\{0\}\right)$ in (1.4), we obtain the class $F_{p, \lambda}^{m}(\alpha, \beta, \zeta)$ studied earlier (see [2]).

We also note that, for different choices of $g(z)$ we have the following new classes:
(i) $R_{p}\left(\frac{z^{-p}}{1-z}, \alpha, \zeta, \beta\right)=R_{p, \zeta}(, \alpha, \beta)$

$$
\left\{f \in \sum_{p}^{*}:\left|\frac{z^{p+1}(f(z))^{\prime}+p}{\mid(2 \zeta-1) z^{p+1}(f(z))^{\prime}+(2 \zeta \gamma-p)}\right|<\beta\right\}
$$

(ii) $R_{p}\left(z^{-p}+\sum_{n=1}^{\infty} \Gamma_{n}\left(\alpha_{1}\right) z^{n} ; \alpha, \zeta, \beta\right)=R_{p, q, s}\left(\alpha_{1}, \gamma, \zeta, \beta\right)$

$$
\left\{\begin{array}{c}
\left|\frac{z^{p+1}\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}+p}{\left|\frac{1}{(2 \zeta-1) z^{p+1}\left(H_{p, q, s}\left(\alpha_{1}\right) f(z)\right)^{\prime}+(2 \zeta \gamma-p)}\right|}\right|<\beta \\
\left(\alpha_{j}>0(j=1, \ldots, q), \beta_{j}>0(j=1,2, \ldots, s)\right. \\
\left.0 \leq \gamma<p ; 0<\beta \leq 1 ; \frac{1}{2} \leq \zeta \leq 1\right)
\end{array}\right\} ;
$$

Where

$$
\begin{gathered}
\Gamma_{m}\left(\alpha_{1}\right)=\frac{\left(\alpha_{1}\right)_{m} \ldots\left(\alpha_{q}\right)_{m}}{\left(\beta_{1}\right)_{m} \ldots\left(\beta_{s}\right)_{m}} \frac{1}{m!} \\
(a)_{k}=\frac{\Gamma(a+k)}{\Gamma(a)}=\left\{\begin{array}{c}
1 \\
a(a+1)(a+2) \ldots(a+k-1)
\end{array} \quad k=0\right. \\
k \in \mathbb{N}
\end{gathered}
$$

and $H_{p, q, s}\left(\alpha_{1}\right)$ was introduced and studied by Liu-Srivastava [8];
(iii) $R_{p}\left(z^{-p}+\sum_{n=1}^{\infty} \frac{\left(\beta_{1}\right)_{n+p} \ldots\left(\beta_{s}\right)_{n+p}(\lambda+p)_{n+p}}{\left(\alpha_{1}\right)_{n+p} \ldots\left(\alpha_{l}\right)_{n+p}} z^{n} ; \alpha, \zeta, \beta\right)=R_{p, \lambda}\left(\alpha_{1}, \gamma, \zeta, \beta\right)$

$$
\left\{\begin{array}{r}
f \in \sum_{p}^{*}:\left|\frac{z^{p+1}\left(M_{p, l, s}^{\lambda}\left(\alpha_{1}\right) f(z)\right)^{\prime}+p}{(2 \zeta-1) z^{p+1}\left(M_{p, l, s}^{\lambda}\left(\alpha_{1}\right) f(z)\right)^{\prime}+(2 \zeta \gamma-p)}\right|<\beta \\
\left(\beta_{j}>0(j=1,2, \ldots, s), \alpha_{j}>0(j=1,2, \ldots, l)\right. \\
\left.0 \leq \gamma<p ; 0<\beta \leq 1 ; \frac{1}{2} \leq \zeta \leq 1 ; \lambda \geq p ; z \in \mathbb{U}^{*}\right)
\end{array}\right\}
$$

where the operator $M_{p, l, s}^{\lambda}\left(\alpha_{1}\right)$ was introduced and studied by Mostafa [9, with $\left.m=0\right]$;
(iv) $R_{p}\left(z^{-p}+\frac{\Gamma(v)}{\Gamma(\lambda+v)} \sum_{n=1}^{\infty} \frac{\Gamma(\lambda+v+n)(\mu)_{n}}{\Gamma(k+v)(1)_{n}} z^{n-p} ; \alpha, \zeta, \beta\right)=R_{p, \mu}^{\lambda, v}(\gamma, \zeta, \beta)$

$$
\left\{f \in \sum_{p}^{*}:\left|\frac{z^{p+1}\left(H_{p, v, \mu}^{\lambda} f(z)\right)^{\prime}+p}{(2 \zeta-1) z^{p+1}\left(H_{p, v, \mu}^{\lambda} f(z)\right)^{\prime}+(2 \zeta \gamma-p)}\right|<\beta\right\}(\lambda \geq 0 ; \mu>0 ; v>-1 ; 0 \leq \gamma<p ; 0<\beta \leq 1 ; ~\},
$$

where the operator $H_{p, v, \mu}^{\lambda}$ was introduced and studied by Mostafa [10].
For more details of meromorphic multivalent functions (see [1], [3], [4], [5], [6], [7], [11] and [13]).

2. Coefficient Estimates

In the reminder of this paper we assume that:

$$
0 \leq \alpha<p, 0<\beta \leq 1, \frac{1}{2} \leq \zeta \leq 1, b_{p+n}>0, n \in \mathbb{N}_{0} \text { and } p \in \mathbb{N}
$$

Theorem1 . A function $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$ if and only if
$\sum_{n=0}^{\infty}(p+n)(1+2 \beta \zeta-\beta) a_{p+n} b_{p+n} \leq 2 \beta \zeta(p-\alpha)$
Proof: Suppose (2.1) holds. For $|z|=r<1$, we have

$$
\begin{aligned}
& \left|z^{p+1}(f * g)^{\prime}(z)+p\right|-\beta\left|(2 \zeta-1) z^{p+1}(f * g)^{\prime}(z)+(2 \zeta \alpha-p)\right| \\
& =\left|\sum_{n=0}^{\infty}(p+n) a_{p+n} b_{p+n} z^{2 p+n}\right|-\beta\left|2 \zeta(p-\alpha)-\sum_{n=0}^{\infty}(p+n)(2 \zeta-1) a_{p+n} b_{p+n} z^{2 p+n}\right| \\
& \leq \sum_{n=0}^{\infty}(p+n) a_{p+n} b_{p+n} r^{2 p+n}-2 \beta \zeta(p-\alpha)+\sum_{n=0}^{\infty} \beta(p+n)(2 \zeta-1) a_{p+n} b_{p+n} r^{2 p+n} \\
& \quad<\sum_{n=0}^{\infty}(p+n)(1+2 \beta \zeta-\beta) a_{p+n} b_{p+n} r^{2 p+n}-2 \beta \zeta(p-\alpha) \leq 0
\end{aligned}
$$

Hence $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$.
Conversely, suppose that

$$
\begin{gathered}
\left|\frac{(f * g)^{\prime}(z)+p}{(2 \zeta-1) z^{p+1}(f * g)^{\prime}(z)+(2 \zeta \alpha-p)}\right| \\
\left|\frac{\sum_{n=0}^{\infty}(p+n) a_{p+n} b_{p+n} z^{2 p+n}}{(2 \zeta-1)\left(p-\sum_{n=0}^{\infty}(p+n) a_{p+n} b_{p+n} z^{2 p+n}\right)-(2 \zeta \alpha-1)}\right|<\beta\left(z \in \mathbb{U}^{*}\right) .
\end{gathered}
$$

Using the fact that $\operatorname{Re}(z) \leq|z|$ for all z, we have
$\operatorname{Re}\left\{\frac{\sum_{n=0}^{\infty}(p+n) a_{p+n} b_{p+n} z^{2 p+n}}{2 \zeta(p-\alpha)-\sum_{n=0}^{\infty}(p+n)(2 \zeta-1) a_{p+n} b_{p+n} z^{2 p+n}}\right\}<\beta\left(z \in \mathbb{U}^{*}\right)$.

Now choose the values of z on the real axis so that $z^{p+1}(f * g)^{\prime}(z)$ is real. Upon clearing the denominator (2.2) and $z \rightarrow 1^{-}$through positive values, we obtain (2.1).
Corollary1. If $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$. Then
$a_{p+n} \leq \frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}$

Sharpness holds for

$$
\begin{equation*}
f(z)=z^{-p}+\frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} \tag{2.4}
\end{equation*}
$$

3. Distortion Theorems

Theorem 2. If $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$. Then

$$
\begin{gathered}
\left(\frac{(p+m-1)!}{(p-1)!}-\frac{(p-1)!}{(p-m)!} \cdot \frac{2 \beta \zeta(p-\alpha)}{(1+2 \beta \zeta-\beta) b_{p}} r^{2 p}\right) r^{-(p+m)} \\
\leq\left|f^{(m)}(z)\right| \leq\left(\frac{(p+m-1)!}{(p-1)!}+\frac{(p-1)!}{(p-m)!} \cdot \frac{2 \beta \zeta(p-\alpha)}{(1+2 \beta \zeta-\beta) b_{p}} r^{2 p}\right) r^{-(p+m)} \\
\left(0<|z|=r<1 ; m \in \mathbb{N}_{0} ; p \in \mathbb{N}, b_{n+p}>0 ; p>m\right)
\end{gathered}
$$

Sharpness holds for

$$
f(z)=z^{-p}+\frac{2 \beta \zeta(p-\alpha)}{p(1+2 \beta \zeta-\beta) b_{p}} z^{p} .
$$

Proof. In view of (2.1), we have

$$
\frac{(1+2 \beta \zeta-\beta) b_{p}}{p!} \sum_{n=0}^{\infty}(p+n)!a_{p+n} \leq \sum_{n=0}^{\infty}(p+n)(1+2 \beta \zeta-\beta) a_{p+n} b_{p+n} \quad \leq 2 \beta \zeta(p-\alpha)
$$

which yields

$$
\begin{equation*}
\sum_{n=0}^{\infty}(p+n)!a_{p+n} \leq \frac{2 \beta \zeta(p-\alpha) p!}{(1+2 \beta \zeta-\beta) b_{p}} \tag{3.1}
\end{equation*}
$$

Now, differentiating both sides of (1.1) m-times with respect to z, we have

$$
\begin{align*}
f^{m}(z)=(-1)^{m} & \frac{(p+m-1)!}{(p-1)!} z^{-(p+m)} \\
& +\sum_{n=0}^{\infty} \frac{(p+n)!}{(p+n-m)!} a_{p+n} z^{p+n-m}\left(m \in \mathbb{N}_{0} ; p \in \mathbb{N} ; p+n\right. \\
& >m) \tag{3.2}
\end{align*}
$$

from (3.1) and (3.2), we have

$$
\begin{aligned}
& \left|f^{m}(z)\right| \leq \frac{(p+m-1)!}{(p-1)!} r^{-(p+m)}+r^{p-m} \sum_{n=0}^{\infty} \frac{(p+n)!}{(p+n-m)!} a_{p+n} \\
& \quad \leq\left(\frac{(p+m-1)!}{(p-1)!}+\frac{p!}{(p-m)!} \cdot \frac{2 \beta \zeta(p-\alpha)}{(1+2 \beta \zeta-\beta) b_{p}} r^{2 p}\right) r^{-(p+m)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|f^{m}(z)\right| \geq \frac{(p+m-1)!}{(p-1)!} r^{-(p+m)}-r^{p-m} \sum_{n=0}^{\infty} \frac{(p+n)!}{(p+n-m)!} a_{p+n} \\
& \geq\left(\frac{(p+m-1)!}{(p-1)!}-\frac{p!}{(p-m)!} \cdot \frac{2 \beta \zeta(p-\alpha)}{(1+2 \beta \zeta-\beta) b_{p}} r^{2 p}\right) r^{-(p+m)}
\end{aligned}
$$

Theorem 2 is completed.

4. Radius of Convexity

Theorem 3. Let $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$. Then $f(z)$ is meromorphically $p-$ valent convex of order $\sigma(0 \leq \sigma<p)$ in $|z|<r$ where

$$
\begin{equation*}
r=\inf _{n}\left\{\frac{(p-\sigma)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)(n+3 p-\sigma)}\right\}^{\frac{1}{2 p+n}}(n \geq 0 ; p \in \mathbb{N}) \tag{4.1}
\end{equation*}
$$

The function $f(z)$ given by (2.4) gives the sharpness.
Proof. We must show that

$$
\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}+p f^{\prime}(z)}{f^{\prime}(z)}\right| \leq(p-\sigma) \text { for }|z|<r
$$

where r is given by (4.1). Indeed we find from (1.1) that

$$
\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}+p f^{\prime}(z)}{f^{\prime}(z)}\right| \leq \frac{\sum_{\mathrm{n}=0}^{\infty}(\mathrm{p}+\mathrm{n})(2 \mathrm{p}+\mathrm{n}) \mathrm{a}_{\mathrm{p}+\mathrm{n}}|\mathrm{z}|^{2 \mathrm{p}+\mathrm{n}}}{\mathrm{p}-\sum_{\mathrm{n}=0}^{\infty}(\mathrm{p}+\mathrm{n}) \mathrm{a}_{\mathrm{p}+\mathrm{n}}|\mathrm{z}|^{2 \mathrm{p}+\mathrm{n}}}
$$

Thus

$$
\left|\frac{\left(z f^{\prime}(z)\right)^{\prime}+p f^{\prime}(z)}{f^{\prime}(z)}\right| \leq p-\sigma
$$

if

$$
\begin{equation*}
\sum_{n=0}^{\infty}\left(\frac{(p+n)(n+3 p-\sigma)}{(p-\sigma)}\right) a_{p+n}|z|^{2 p+n} \leq 1 \tag{4.2}
\end{equation*}
$$

But, by Theorem1, (4.2) will be true if

$$
\left(\frac{(n+3 p-\sigma)}{(p-\sigma)}\right)|z|^{2 p+n} \leq \frac{(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)}
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(p-\sigma)(1+2 \beta \zeta-\beta) b_{p+n}}{(p+n)(n+3 p-\sigma)}\right\}^{\frac{1}{2 p+n}}(n \geq 0 ; p \in \mathbb{N}) \tag{4.3}
\end{equation*}
$$

Theorem 3 follows easily from (4.3).

5. Closure Theorems

Theorem 4. Let

$$
\begin{equation*}
f_{p-1}(z)=z^{-p} \tag{5.1}
\end{equation*}
$$

and
$f_{p+n}(z)=z^{-p}+\frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} z^{p+n}(n \geq 0 ; p \in \mathbb{N}$

Then $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{n=-1}^{\infty} \psi_{p+n} f_{p+n}(z), \tag{5.3}
\end{equation*}
$$

where $\psi_{p+n} \geq 0$ and $\sum_{n=-1}^{\infty} \psi_{p+n}=1$.
Proof. Suppose that $f(z)=\sum_{n=-1}^{\infty} \psi_{p+n} f_{p+n}(z)$. Then

$$
f(z)=z^{-p}+\sum_{n=0}^{\infty} \frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} \psi_{p+n} z^{p+n} .
$$

We have

$$
\begin{gathered}
\sum_{n=0}^{\infty}(p+n)(1+2 \beta \zeta-\beta) b_{p+n} \cdot \frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} \psi_{p+n} \\
=2 \beta \zeta(p-\alpha) \sum_{n=0}^{\infty} \psi_{p+n}=2 \beta \zeta(p-\alpha)\left(1-\psi_{p+n}\right) \\
\leq 2 \beta \zeta(p-\alpha)
\end{gathered}
$$

From Theorem 1, $f(z) \in R_{p}(g, \alpha, \zeta, \beta)$.
Conversely, assume that $f(z)$ defined by $(1.1) \in R_{p}(g, \alpha, \zeta, \beta)$. Then (2.4) holds. Setting

$$
\begin{equation*}
\psi_{p+n}=\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n}(n \geq 0 ; p \in \mathbb{N}) \tag{5.4}
\end{equation*}
$$

and

$$
\psi_{p-1}=1-\sum_{n=0}^{\infty} \psi_{p+n}
$$

we thus have (5.3). This evidently completes the proof of Theorem 4 .

Theorem 5. The class $R_{p}(g, \alpha, \zeta, \beta)$ is closed under convex linear combination.

Proof. Suppose each of the functions

$$
\begin{equation*}
f_{i}(z)=z^{-p}+\sum_{n=0}^{\infty} a_{p+n, i} z^{p+n} \cdot\left(a_{p+n, i} \geq 0, i=1,2\right) \tag{5.5}
\end{equation*}
$$

are in the class $R_{p}(g, \alpha, \zeta, \beta)$. It is sufficient to show that the function $w(z)$ defined by

$$
\begin{equation*}
w(z)=(1-s) f_{1}(z)+s f_{2}(z)(0 \leq s \leq 1) \tag{5.6}
\end{equation*}
$$

is also in the class $R_{p}(g, \alpha, \zeta, \beta)$. Since

$$
w(z)=z^{-p}+\sum_{n=0}^{\infty}\left[(1-s) a_{p+n, 1}+s a_{p+n, 2}\right] z^{p+n} \quad(0 \leq s \leq 1)
$$

In view of Theorem1, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty}(p+n)(1+2 \beta \zeta-\beta) b_{p+n}\left[(1-s) a_{p+n, 1}+s a_{p+n, 2}\right] \\
=(1-s) \sum_{n=0}^{\infty}\left[(p+n)(1+2 \beta \zeta-\beta) b_{p+n}\right] a_{p+n, 1}+s \sum_{n=0}^{\infty}\left[(p+n)(1+2 \beta \zeta-\beta) b_{p+n}\right] a_{p+n, 2} \\
\leq(1-s) 2 \beta \zeta(p-\alpha)+2 s \beta \zeta(p-\alpha)=2 \beta \zeta(p-\alpha)
\end{gathered}
$$

This shows that $w(z) \in R_{p}(g, \alpha, \zeta, \beta)$. and hence the proof of Theorem 5 is completed.

6. Convolution Properties

Theorem 6. Let $f_{i}(z) \in R_{p}(g, \alpha, \zeta, \beta)(i=1,2)$, where $f_{i}(z)(i=1,2)$ are in the form (5.5)

- Then $\left(f_{1} * f_{2}\right)(z) \in R_{p}(g, \omega, \zeta, \beta)$, where

$$
\begin{equation*}
\omega=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{p(1+2 \beta \zeta-\beta) b_{p}} \tag{6.1}
\end{equation*}
$$

Sharpness holds for

$$
\begin{equation*}
f_{i}(z)=z^{-p}+\frac{2 \beta \zeta(p-\alpha)}{p(1+2 \beta \zeta-\beta) b_{p}} z^{p}(i=1,2) \tag{6.2}
\end{equation*}
$$

Proof. Using the technique for analytic functions (see [12]), we need to find the largest real parameter ω such that

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\omega)} a_{p+n, 1} a_{p+n, 2} \leq 1
$$

Since $f_{i}(z) \in R_{p}(g, \alpha, \zeta, \beta)(i=1,2)$, we have

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n, 1} \leq 1
$$

and

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n, 2} \leq 1
$$

By Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} \sqrt{a_{p+n, 1} a_{p+n, 2}} \leq 1 \tag{6.3}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{aligned}
& \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\omega)} a_{p+n, 1} a_{p+n, 2} \\
\leq & \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} \sqrt{a_{p+n, 1} a_{p+n, 2}}
\end{aligned}
$$

or, equivalently, that

$$
\sqrt{a_{p+n, 1} a_{p+n, 2}} \leq \frac{(p-\omega)}{(p-\alpha)}
$$

Hence, in the light of the inequality (6.3), it is sufficient to prove that

$$
\begin{equation*}
\frac{2 \beta \zeta(p-\alpha)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} \leq \frac{(p-\omega)}{(p-\alpha)} \tag{6.4}
\end{equation*}
$$

It follows from (6.4) that

$$
\omega=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}
$$

Let

$$
G(n)=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}
$$

then $G(n)$ is increasing function of $n(n \geq 0)$. Therefore, we conclude that,

$$
\omega \leq G(0)=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{p(1+2 \beta \zeta-\beta) b_{p}}
$$

and hence the proof of Theorem 6 is completed.

Theorem 7. Let $f_{1}(z) \in R_{p}(g, \alpha, \zeta, \beta)$ and $f_{2}(z) \in R_{p}(g, \delta, \zeta, \beta)$ where $f_{i}(z)(i=1,2)$ are in the form (5.5). Then $\left(f_{1} * f_{2}\right)(z) \in R_{p}(g, \varphi, \zeta, \beta)$, where

$$
\varphi=p-\frac{2 \beta \zeta(p-\alpha)(p-\delta)}{p(1+2 \beta \zeta-\beta) b_{p}}
$$

Sharpness holds for

$$
f_{1}(z)=z^{-p}+\frac{2 \beta \zeta(p-\alpha)}{p(1+2 \beta \zeta-\beta) b_{p}} z^{p}
$$

and

$$
f_{2}(z)=z^{-p}+\frac{2 \beta \zeta(p-\delta)}{p(1+2 \beta \zeta-\beta) b_{p}} z^{p}
$$

Proof. We need to find the largest real parameter φ such that

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\varphi)} a_{p+n, 1} a_{p+n, 2} \leq 1
$$

Since $f_{1}(z) \in R_{p}(g, \alpha, \zeta, \beta)$, we have

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n, 1} \leq 1
$$

and $f_{2}(z) \in R_{p}(g, \delta, \zeta, \beta)$, we have

$$
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\delta)} a_{p+n, 2} \leq 1
$$

By Cauchy-Schwarz inequality we have

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta \sqrt{(p-\alpha)} \sqrt{(p-\delta)}} \sqrt{a_{p+n, 1} a_{p+n, 2}} \leq 1 \tag{6.5}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{aligned}
& \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\varphi)} a_{p+n, 1} a_{p+n, 2} \\
\leq & \frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta \sqrt{(p-\alpha)} \sqrt{(p-\delta)}} \sqrt{a_{p+n, 1} a_{p+n, 2}}
\end{aligned}
$$

or, equivalently, that

$$
\sqrt{a_{p+n, 1} a_{p+n, 2}} \leq \frac{(p-\varphi)}{\sqrt{(p-\alpha)} \sqrt{(p-\delta)}}
$$

Hence, in the light of the inequality (6.5), it is sufficient to prove that

$$
\begin{equation*}
\frac{2 \beta \zeta \sqrt{(p-\alpha)} \sqrt{(p-\delta)}}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}} \leq \frac{(p-\varphi)}{\sqrt{(p-\alpha)} \sqrt{(p-\delta)}} \tag{6.6}
\end{equation*}
$$

It follows from (6.6) that

$$
\varphi \leq p-\frac{2 \beta \zeta(p-\alpha)(p-\delta)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}
$$

Let

$$
M(n)=p-\frac{2 \beta \zeta(p-\alpha)(p-\delta)}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}
$$

then $M(n)$ is increasing function of $n(n \geq 0)$. Therefore, we conclude that

$$
\varphi \leq M(0)=p-\frac{2 \beta \zeta(p-\alpha)(p-\delta)}{p(1+2 \beta \zeta-\beta) b_{p}}
$$

and hence the proof of Theorem 7 is completed.

Theorem 8. Let $f_{i}(z) \in R_{p}(g, \alpha, \zeta, \beta)(i=1,2)$ where $f_{i}(z)(i=1,2)$ are in the form (5.5) . Then

$$
h(z)=z^{-p}+\sum_{n=1}^{\infty}\left(a^{2}{ }_{p+n, 1}+a^{2}{ }_{p+n, 2}\right) z^{p+n}
$$

belongs to the class $R_{p}(g, \alpha, \eta, \beta)$

$$
\eta=p-\frac{4 \beta \zeta(p-\alpha)^{2}}{p(1+2 \beta \zeta-\beta) b_{p}}
$$

Sharpness holds for $f_{i}(z)(i=1,2)$ defined by (6.2).

Proof. By using Theorem 1, we obtain

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)}\right\}^{2} a_{p+n, 1}^{2} \\
\leq & \sum_{n=0}^{\infty}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n, 1}\right\}^{2} \leq 1 \tag{6.7}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{n=0}^{\infty}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)}\right\}^{2} a_{p+n, 2}^{2} \\
\leq & \sum_{n=0}^{\infty}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)} a_{p+n, 2}\right\}^{2} \leq 1 \tag{6.8}
\end{align*}
$$

It follows from (6.7) and (6.8) that

$$
\sum_{n=0}^{\infty} \frac{1}{2}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)}\right\}^{2}\left(a^{2}{ }_{p+n, 1}+a^{2}{ }_{p+n, 2}\right) \leq 1 .
$$

Therefore, we need to find the largest η such that

$$
\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\eta)} \leq \frac{1}{2}\left\{\frac{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}{2 \beta \zeta(p-\alpha)}\right\}^{2} .
$$

Let

$$
H(n)=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{(p+n)(1+2 \beta \zeta-\beta) b_{p+n}}
$$

then $H(n)$ is increasing function of $n(n \geq 0)$ Therefore, we conclude that

$$
\eta \leq H(0)=p-\frac{2 \beta \zeta(p-\alpha)^{2}}{p(1+2 \beta \zeta-\beta) b_{p}} .
$$

and hence the proof of Theorem 8 is completed.

Remarks (i) Putting $g(z)=z^{-p}+\sum_{n=0}^{\infty}\left(\frac{p+\lambda n}{p}\right)^{k} z^{p+n}\left(\lambda \geq 0, p \in \mathbb{N}, k \in \mathbb{N}_{0}\right)$,
in our results we obtain the results obtained by Aouf [2].
(ii) Specializing the function $g(z)$ in our results, we obtain new resultes associated to the classes $R_{p, \zeta}(, \alpha, \beta), R_{p, q, s}\left(\alpha_{1}, \gamma, \zeta, \beta\right)$ and $R_{p, \mu}^{\lambda, \nu}(\gamma, \zeta, \beta)$ defined in the introduction.

References

[1] M. K. Aouf, A generalization of meromorphic multivalent functions with positive coefficients, Math. Japon., 35(1990), 609-614.
[2] M. K. Aouf, A class of meromorphic multivalent functions with positive coefficients, Taiwanese J. Math., 12(2008), no. 9, 2517-2533.
[3] M. K. Aouf, Certain subclasses of meromorphically multivalent functions associated with generalized hypergeometric function, Comput., Math. Appl., 55(2008), 494-509.
[4] M. K. Aouf, The generalized hypergeometric function and associated families of meromorphically multivalent functions, J. Math. Ineq., 3(2009), no. 1, 43-62.
[5] M. K. Aouf and H. M. Hossen, New criteria for meromorphic $p \&$ valent starlike functions, Tsukuba J. Math., 17(1993), 481-486.
[6] M. K. Aouf, H. M. Hossen and H. E. Elattar, A certain class of meromorphic multivalent functions with positive coefficients with fixed second coefficients, Punjab Univ. J. Math., 33(2000), 115-124.
[7] S. B. Joshi and M. K. Aouf, Meromorphic multivalent functions with positive coefficients and fixed second coefficients, Kyungpook Math. J., 35(1995), 163-169.
[8] J. L. Liu and H. M. Srivastava, Subclasses of meromorphically multivalent functions associated with certain linear operator, Math. Comput. Modelling, 39 (2004), 35-44.
[9] A. O. Mostafa, Applictions of differential subordintion to certain Subclasses of p-valent meromorphic functions involving a certain operator, Math. Comput. Modelling, 54(2011), 1486-1498.
[10] A. O. Mostafa, Incusion results for certain subclasses of p-valent meromorphic functions associated with a new operator, J. Ineq. Appl., 169(2012), 1-14.
[11] S. Owa, H. E. Darwish and M. K. Aouf, Meromorphic multivalent functions with positive coefficients and fixed second coefficients, Math. Japon., 46(1997), no. 2, 231-236.
[12] A. Schild and H. Silverman, Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodwska Sect. A, 29(1975), 99-106.
[13] H. M. Srivastava, H. M. Hossen and M. K. Aouf, A unified presentation of some classes of meromorphically multivalent functions, Comput. Math. Appl., 38(1999), 63-70.

