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Abstract 

In this paper we introduce and study a subclass               of meromorphic     valent functions in 

𝕌
 
 {       | |   }. Therefore we obtain some coefficient estimates, distortion theorems, convex linear 

combinations and radius of convexity for functions belonging to the subclass              .   Also we derive 

several interesting results involving Hadamard product (or convolution) of functions belonging to this subclass. 

 

Keywords:    valent Meromorphic functions, Convolution. 

 

1. Introduction 
 

  The class of meromorphic functions which are analytic and  p  -valent in 𝕌
 
 {       | |  

 }  𝕌 { }    and has the form:  

         ∑      
        (           {     })                     

 

   

 

is denoted by    
 . For        in this form and        

    given by 

         ∑     
                                                                            

 

   

 

the Hadamard product (or convolution) of        and        is given by 



Certain Subclass of Meromorphic  Valent…... 

Vol.9 (2),52-66,Dec.2019 25 

 

 

             ∑          
                                                   

 

   

 

For               
 

 
         and         

   we say that  

                     if it satisfies: 
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Putting              (
    

 
)
 

                     { }  
      in (1.4), we obtain 

the class      
         studied earlier (see [2]). 

We also note that, for different choices of        we have the following new classes: 
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Where 
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and              was introduced and studied by Liu-Srivastava [8]; 
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where the operator        
       was introduced and studied by Mostafa [9, with    ]; 

 

(iv)   (    
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where the operator        
   was introduced and studied by Mostafa [10]. 

For more details of meromorphic multivalent functions (see [1], [3], [4], [5], [6], [7], [11] and 

[13]). 
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2. Coefficient Estimates 
 

      In the reminder of this paper we assume that: 

            
 

 
                 and      

Theorem1 . A function                     if and only if  

∑                                                                   

 

   

 

Proof:  Suppose (2.1) holds. For | |         we have 

 

     |               |   |                           |  

  |∑              
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Hence                      

  Conversely, suppose that 
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 Using the fact that        | |  for all  , we have 
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  {
               

        
   

                                     
   

}   (  𝕌
 
)           

 

      Now choose the values of     on the real axis so that                 is real. Upon clearing 

the denominator (2.2) and       through positive values, we obtain (2.1).     

 Corollary1 . If                  ) . Then  

      
        

                  
                                                                                

 

 

Sharpness holds for 

                                  
        

                  
                                                              

 

 

3. Distortion Theorems 
 

Theorem 2 . If                  ) . Then  

(
        

      
 

      

      
 

        

           
   )        

 |       |  (
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(  | |                         )  

 

Sharpness holds for  

         
        

            
    

 

  Proof.  In view of (2.1), we have  
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Now, differentiating both sides of (1.1)    -times with respect to   , we  have  

           
        

      
       

 ∑
      

        
     

      

 

   

             

                                                                                                                

                                                                     

from (3.1) and (3.2), we have 
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Theorem 2 is completed. 
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4. Radius of Convexity 
 

Theorem 3.  Let                  )  . Then        is meromorphically      valent convex of 

order            in  | |      where 

  
   
 

{
                  

                
}

 

    

                                        

 

The function        given by (2.4) gives the sharpness. 

Proof. We must show that 

 

|
                

     
|              | |        

where    is given by (4.1). Indeed we find from (1.1) that   
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But, by Theorem1 , (4.2) will be true if  

(
        

     
) | |     

             

        
  

that is, if 
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                                          (4.3) 

 

  Theorem 3 follows easily from (4.3). 

 

5.  Closure Theorems  
 

Theorem 4.  Let  

                                                                                                                (5.1) 

and  

            
        

                  
                                                                           (5.2) 

 

Then                    if and only if it can be expressed in the form 
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where          and            
       

Proof. Suppose that                    
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We have  
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From Theorem 1,                          

Conversely, assume that        defined by (1.1)                Then (2.4) holds.    Setting     
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 and    

       ∑      

 

   

 

we thus have (5.3). This evidently completes the proof of Theorem 4 .  

    

 Theorem 5.  The class               is closed under convex linear combination.  

 

 Proof.  Suppose each of the functions    

 

          ∑        
      (              ) 

 

   

                                              

   are in the class               It is  sufficient to show that the function        defined by  

                                                                                  (5.6) 

  is also in the class                Since     
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  In view of Theorem1 , we have  
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This shows that                      and  hence the proof of Theorem 5 is completed. 
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6.  Convolution Properties 
 

Theorem 6.  Let                                  where                are in the form (5.5) 

.  Then                           where  

 

                                          
         

            
                                               

 Sharpness holds for  

                                                
        

            
                                           

 

Proof. Using the technique for analytic functions (see [12]), we need to find the largest real 

parameter    such that 
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Since                             we have 

∑
                  

        
        

 

   

 

and 

∑
                  

        
        

 

   

  

 

By Cauchy-Schwarz inequality we have 

 

             ∑
                  

        
√                                                    

 

   

 

 

Thus it is sufficient to show that 
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or, equivalently, that 

√             
     

     
  

Hence, in the light of the inequality (6.3), it is sufficient to prove that  

 

        

                  
 

     

     
                                                          

It follows from (6.4) that 

    
         

                  
  

Let 

       
         

                  
  

then        is increasing function of          Therefore, we conclude that ,  

         
         

            
 

and hence the proof of Theorem 6 is completed. 

 

 Theorem 7.  Let                        and                       where                are 

in the form (5.5) .  Then                           where  

 

                                          
             

            
                       

 

Sharpness holds for  
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Proof. We need to find the largest real parameter    such that 
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   √     √     
√             

or, equivalently, that 
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Hence, in the light of the inequality (6.5), it is sufficient to prove that 
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It follows from (6.6) that 
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then        is  increasing function of           Therefore, we conclude that 

         
             

            
 

and hence the proof of Theorem 7 is completed. 

 

Theorem 8.  Let                            where                are in the form (5.5) .

Then 
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belongs to the class               

    
         

            
 

Sharpness holds for                 defined by (6.2). 

 

Proof. By using Theorem 1, we obtain 
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It follows from (6.7) and (6.8) that 
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Therefore, we need to find the largest     such that 
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then        is increasing function of           Therefore, we conclude that 
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and hence the proof of Theorem 8 is completed. 

 

Remarks  (i) Putting            (
    

 
)
 

                   
 
     

  in our results we obtain the results obtained by Aouf [2]. 

(ii) Specializing the function        in our results, we obtain new resultes associated to the classes  

                              and      
            defined in the introduction. 
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