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An additive manufacturing technique called High Speed Sintering (HSS) has
enormous potential for producing intricate, superior polymer parts on a large scale.
HSS process is modelled in this paper using a novel Radial Basis Function neural
network (RBFNN) technique. The data gathered from the HSS process was analysed to
determine the healthy/unhealthy data that could achieve a good/bad build. A powerful
technique is developed for early fault detection (FD) and, consequently, to predict the
quality of the parts produced using HSS. The RBFNN model was validated and tested
to assess the robustness of the approach, and the simulation outcomes demonstrated
that the faults could be clearly identified, and the quality of the produced parts possibly
will be predicted.

1 Introduction monitoring technical applications and processes
(Isermann, R., 1984). Numerous studies on fault
The new process known as High-Speed Sintering isolation and detection have been conducted in both
(HSS) is based on printing successive cross-sections. academic and industrial domains within the past 30
An infrared lamp is flashed throughout the entire years. The primary goal of fault isolation and detection
building area after the HSS procedure deposits a is to enable a process system to run properly without
Radiation Absorbing Material (RAM) over the relevant any malfunctions that could result in subpar
area. The region will absorb enough energy to raise the performance or inappropriate behaviour. A number of
temperature of the underlying powder to its melting system malfunctions, including sensor, actuator, and
point, enabling sintering to take place. The part's un- component faults, can happen in a healthy

sintered powder will be eliminated after the building's
operation is complete (Majewski, C. E. et al., 2007)

heat-up the layer-by-layer building process cool-down
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(Majewski, C. E. et al., 2008). Figure 1 depicts the HSS — s 2— | aw |
procedure (Kemnitzer, J. et al., 2024). An undesirable - - -
deviation of one or more system variables from the 1 o it — !
typical/healthy behaviour is referred to as a fault. spplicstion shergy input

During the build operation of HSS, Faults may arise

during the process; as a result, damaged parts will be Figure 1: HSS process

constructed, resulting in additional time and expense
spent. Because reliability and safety are becoming more
and more important, there is a greater focus on

system. Actuators, sensors (instruments), or process
elements themselves may all have flaws. Instrument
fault detection (IFD), actuator fault detection (AFD),
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and component fault detection (CFD) are the terms
used to describe fault detection (FD) of these defects.
Globally, there is a growing interest in the fundamental
studies of fault detection and isolation (Frank, P.
M.,1992). Analytical (i.e., functional) redundancy, as
opposed to physical redundancy, is the foundation of
the FD technique. This suggests that FD takes
advantage of the built-in redundancy in the static and
dynamic links between the system inputs and measured
outcomes. Functional redundancy uses residuals as
characteristics and deals with two or more functions
that describe the same process (Gertler, J. J., 1988).
Stubbs, S. et al. (2012) have described a simplified
monitoring-specific canonical variate analysis (CVA)
state space modelling approach for FD in dynamic
processes. A more straightforward CVA state space
model with three matrices was presented in their paper
specifically for process monitoring. Fuzzy-model-based
robust FD with stochastic mixed time delays and
sequential packet dropouts was introduced by Dongo,
H. et al. (2012). The network-based resilient FD
problem for a class of uncertain discrete-time Takagi-
Sugeno fuzzy systems with sequential packet dropouts
and stochastic mixed time delays is the focus of their
research. In order to maintain guaranteed performance
and exponentially stable FD dynamics, a fuzzy FD
filter has been created. It has been demonstrated that
artificial neural networks (ANN) are highly effective
for modelling and controlling nonlinear systems
(Narendra, K.S. and Parthasarathy, K., 1990)
(Narendra, K. S., 1996). If feedback links are added,
ANN can also be used to model nonlinear dynamic
systems. High processing speeds, high input error
tolerance, and adaptability are all features of neural
networks. The artificial neural network (ANN)
technique to fault identification and isolation has been
proposed by numerous research and journal articles as a
solution to modelling and classification issues in
dynamic systems. In the last several years, RBFNNs
have become incredibly popular as a substitute for the
slowly convergent multi-layer perception. Like the
multi-layer perception, the RBFNN can model any non-
linear function (Nelles, O., 2001) (Patan, K., 2008).
RBFNNs were proposed by Yu et al. (1999) for the
diagnosis of process faults. It was examined how to
diagnose actuator, component, and sensor failures by
using the output prediction error as a residual between a
neural network model and a non-linear dynamic
process. Finding a potent method for FD for the HSS is
the primary goal of this study. Consequently, the

application of the RBF artificial neural network (ANN)
for modelling and early FD in the HSS is suggested in
this paper and will be used to identify various types of
defects and therefore to avoid producing faulty parts.
This sort of neural network has been chosen because it
has a simple structure, and it is easy to train. This FD
technique will be a significant contribution to the
industry area if the simulation results are satisfactory
and if the defects can be identified and detected.

2  Neural Network Modelling

2.1

An outstanding mathematical technique for handling
non-linear issues is artificial neural networks (ANNS).
They are particularly helpful in cases where the process
has not been mathematically modelled, making it
impossible to apply traditional techniques like
observers or parameter estimation methods (Patan, K.,
2008). With minimal or no prior knowledge of the
procedure, a neural network can use the learning
method to extract the system attributes from past
training data. This offers a tremendous deal of
flexibility in modelling non-linear systems (Zhai, Y. J.
and Yu, D. L., 2007). RBFNNs will be utilised in this
project; they were selected due to their straightforward
structure, can mimic any non-linear function and ease
of training.

Introduction

2.2 RBFNNSs structure

Figure 2 depicts the architecture of RBFNNs. The
RBFNN comprises three layers: the input layer, a single
hidden layer, the non-linear layer, and the linear output
layer. The input vector is denoted by X, the hidden layer
output vector by h, the weight matrix by W, and the
output vector by U (Patan, K., 2008) (Zhai, Y. J. and
Yu, D. L., 2007) (Oliver N. O., 2001). The network's
size
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Figure 2: The RBFNN Structure.

affects training time. Consequently, the neural
network's size should be modest in order to minimise
training time; for this reason, the hidden layer has been
selected as a single layer. In this study, using the K-
means clustering algorithm, the RBF centre is chosen
from a set of training data. Reducing the total squared
distances between each input data point and its closest
centre is the aim of the activation functions in order to
adequately cover the data (Zhai, Y. J. and Yu, D. L.,
2007) (Oliver N. O., 2001).

3 HSS Modelling using RBFNN

Over the past 30 years, artificial neural networks have
been the subject of extensive research and have been
effectively used for dynamic system modelling. Since
neural networks can handle the most complex scenarios
that are too poorly specified for deterministic
algorithms to handle, they offer an intriguing and
beneficial substitute for traditional approaches (Patan,
K., 2008). This project models HSS using an RBFNN
because it provides an excellent computational ability
for handling non-linear challenges and training is
extremely fast.

3.1 Collecting data

Getting appropriate data for training is the initial stage
of modelling HSS using RBFNN. The goal of
conducting an experiment scheme using such data is to

accuracy. In order to ensure that the training data
sufficiently covers the designated operating zone, the
input signals must stimulate the process's dynamic
modes at various frequencies. Lightbody, G. and Irwin,
G. W., (1997) presented a mongrel irritation signal for
neural network training. While identifying linear
systems may merely require a constantly stimulating
input signal, nonlinear system identification requires
additional considerations. A neural network model's
process modelling is divided into two sections: the
process dynamics are captured in the first, while the
basic nonlinear transmitter function is approximated in
the second (Zhai, Y. J. and Yu, D. L., 2007). Five
inputs were taken from the temperature data during the
operation, and four inputs were the settings of the build
process. A set of data was gathered for the nine input
signals of the HSS. As an example, Figures 3 and 4
display the temperature data both before and after
filtration. Table 1 displays the data that was gathered.
Utilising Eq. (1), the temperature data (T) is separated.

Truterea(t) = Ur  Triterea(t — 1) + (1 — up)T(t) 1)

Where the value of uT, a low-pass filter coefficient,
can be selected between 0 and 1. To improve the neural
network's accuracy and reduce errors, all input data
from HSS will be scaled to the (0, 1) range prior to
training or validating the RBFNN. The output data is
already 0 or 1, thus scaling is not necessary.
Accordingly, a score of 0 indicates an unsuccessful
build, while a score of 1 indicates a successful one. Eq.
(2) makes use of the linear scale.

Uy(e) = O Ui @

Umax— Umin

where U, is the scaled input and U,,,;;, and Upey are
the data set's minimum and maximum inputs,
respectively. The threshold was used to calculate the
inaccuracy in order to assess the modelling effects. The
Eqg. (3) and (4) provide the inaccuracy.

Error = — %I, |tr = Y(0)| = — XMy le (6)]

manage the evaluated data as usefully as possible, @)
subject to any available constraints, as the data will
affect the network modelling implementation's
Open Access Atrticle is distributed under a CC BY 4.0 Licence.
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MAE% = (= EiL, 1Y (6) - Error(t)]) = 100
4

An average of absolute errors is called the MAE. Y(t)
is the HSS model's output (predicted output), and tr is

the threshold that is selected for modelling
performance. Y(t) is the HSS's actual output.
180
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Figure 3: Temperature data before filtering
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Figure 4: Temperature data after filtering

Table 1. The collected inputs data.

The input data Range

1| Initial power input % (ip) 47 and 53

2 Greyscale (gs) land5

3 Build overhead C® (bo) 142  and

152

4
Pre-head power % (pp) 35and 70

5 Temperature at the second | 134.4 and
number 2000 (C°) 156.1

6 Temperature data at one minute | 142.7 and
before the break point (C°) 157

! Temperature at the break point | 144.8 and
() 157.1

8 The minimum value of the | 119.1 and
temperature during the build | 133
operation (C°)

9 The maximum value of the
temperature during the build
operation (C°)

3.2 Model structure selection

Identifying the RBFNN model's input variables is the
second stage. As previously stated, the HSS to be
simulated includes nine input variables, and one output
vector has the values 0 and 1: (1) denotes a successful
construction, whereas (0) denotes a failed build. The
input from the network that caused the least oversights
in modelling was chosen as shown in Figure 5. There
are ten inputs and one output in the RBF model. 34
nodes have been chosen as the hidden layer nodes.
Prior to training, the K-means clustering approach was
used to select 34 centers, and the p-nearest-neighbors
algorithm was used to determine the width o. The
width was the same for all 34 hidden layer nodes'
Gaussian functions. The recursive squares algorithm's
weights W were utilised for training.
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Figure 5: Structure of the RBFNN model

3.3

The HSS system produced a data set of 49 samples in
total. The 34 samples in the first batch were used to
train neural networks, while the 15 samples in the
second set were utilised to validate the model. The
model training and validation results for the 15 samples
in the test data set and the 34 samples in the training
data set are displayed in Figure 6. In general, it is
evident that the two outputs match well with a
negligible error. The set of test data has a lower
modelling error than the set of training. The modelling
impacts are assessed using the mean absolute error
(MAE %). The MAE value for this model is 0.0206.

Training and validating the model

3.4 Simulation results

Overall, a satisfactory prediction between the output of
the HSS and the output of RBFNN was obtained. Also,
the RBFNN model was trained and tested using 34
hidden nodes, and the simulation results were excellent.
Figure 6 shows that there is a very slight mismatch in
the MAE between the RBFNN and the HSS output.

T T T
12 The Target Output (Perfect Build)
RBFNN Predicted Ouput
1
|
|
0.8 T

L
N
L

-0.2
0

Perfect Build

10 20 30 40 50
Samples

Figure 6: HSS outputs and prediction of the RBF model

3.5 Cross validation

Since the model has previously seen the data, it is
generally a methodological error to use the same data
set for both training and testing. Consequently, the
model would just replicate the sample labels. In that
scenario, the model might produce flawless test results,
but once it uses unseen data, it might not be able to
predict any outcomes. Applying the cross-validation
procedure while excluding a portion of the available
training data set is necessary to solve this issue. After
the model has been trained, the deleted data will be
regarded as fresh data and can be used to evaluate the
model. The entire data set for this research consisted of
49 samples, and cross validation was applied four
times, using different data sets for training and
validation each time. Eight samples for validation and
forty-one samples for training were used in the cross-
validation. The model training and validation outcomes
are displayed in Figures 7 - 14. Every figure has a
threshold that is selected and shown in these figures as
well. Additionally, the threshold for each figure is used
to define the MAE%. The MAE% for each model
throughout train and validation is finally determined by
calculating the average value of the threshold. Each
RBFNN trained model's hidden nodes and accuracy for
the train and validation, respectively, are displayed in
Tables 2-3. Additionally, as shown in Figures 15 -16,
some of the input variables have been plotted in 3D to
determine the correlation between them.

T T T T T T T T
1.2+ The Target Output (Perfect Build)
RBFNN Predicted Ouput

0.8

0.6

1

Perfect Build

202 r r r r r r r r
0 5 10 15 20 25 30 35 40 45

Samples

Figure 7: RBFNN prediction and HSS output of the
first model training
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Figure 8: RBFNN prediction and HSS output of the
first model validation
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Figure 9: RBFNN prediction and HSS output of the
second model training
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Figure 10: RBFNN prediction and HSS output of the
second model validation
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Figure 11: RBFNN prediction and HSS output of the
third model training
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Figure 12: RBFNN prediction and HSS output of the
third model validation
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Figure 13: RBFNN prediction and HSS output of the
fourth model training
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Figure 14: RBFNN prediction and HSS output of the
fourth model validation

Table 2. The trained models' accuracy.

RBFN | Hid | Thres | Accur The
N - hold acy mean | Accur
model | den Thres acy
nod hold
es
Model 14 + 95.45 | 0.0475 | 97.55
(1) 0.05 % %
Model 13 + 92.43 | 0.0475 | 97.56
(2) 0.05 % %
Model 17 + 91.66 | 0.0475 | 97.53
(3) 0.05 % %
Model 21 + 91.63 | 0.0475 | 97.55
4) 0.04 % %
Average accuracy 92.79 97.54
% %

Table 3. The validation models' accuracy.

The
RBFNN | Thres | Accura mean Accura
model -hold -cy Thresho
_Cy
-Id
Model 0.03 | 99.63% | 0.025 | 99.87%
@)
Model 0.03 |99.17% | 0.025 | 99.84%
2
Model 0.02 | 99.53% | 0.025 | 99.80%
®)
Model 0.02 |99.73% | 0.025 | 99.93%
(4)
Average accuracy | 99.51 % 99.86 %

148

120 146
Break Point 100 142 Build Overhead
Figure 15: The correlation between break point and

build overhead

Output

30 44

Prehead Power Intial Power
Figure 16: The correlation between pre-head power and
initial power

4  Conclusions

This project has chosen the RBFNN to model the HSS
process because it has an ability to model many non-
linear systems. The RBFNN and the training model
have been presented and described in this paper. The
input data set has been obtained from the experiment of
the HSS build operation. An RBF model was designed
with 10 inputs and 1 output and the hidden layer nodes
were selected for each model. RBFNN model was
trained and tested using the collected data. Moreover,
cross validation was applied 4 times in order to prove
robust the RBFNN model. With only minor errors, the
simulation results for model training and testing
demonstrate good results and an excellent
correspondence between the output of the HSS and
RBFNN. As a result, any flawed build could be quickly
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and easily identified before the process began. The
accuracy and the average accuracy of train and test the
proposed model are listed in Tables 2 and 3.
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