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  An additive manufacturing technique called High Speed Sintering (HSS) has 

enormous potential for producing intricate, superior polymer parts on a large scale. 

HSS process is modelled in this paper using a novel Radial Basis Function neural 

network (RBFNN) technique. The data gathered from the HSS process was analysed to 

determine the healthy/unhealthy data that could achieve a good/bad build. A powerful 

technique is developed for early fault detection (FD) and, consequently, to predict the 

quality of the parts produced using HSS. The RBFNN model was validated and tested 

to assess the robustness of the approach, and the simulation outcomes demonstrated 

that the faults could be clearly identified, and the quality of the produced parts possibly 

will be predicted. 
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1 Introduction  

The new process known as High-Speed Sintering 

(HSS) is based on printing successive cross-sections. 

An infrared lamp is flashed throughout the entire 

building area after the HSS procedure deposits a 

Radiation Absorbing Material (RAM) over the relevant 

area. The region will absorb enough energy to raise the 

temperature of the underlying powder to its melting 

point, enabling sintering to take place. The part's un-

sintered powder will be eliminated after the building's 

operation is complete (Majewski, C. E. et al., 2007) 

(Majewski, C. E. et al., 2008). Figure 1 depicts the HSS 

procedure (Kemnitzer, J. et al., 2024). An undesirable 

deviation of one or more system variables from the 

typical/healthy behaviour is referred to as a fault. 

During the build operation of HSS, Faults may arise 

during the process; as a result, damaged parts will be 

constructed, resulting in additional time and expense 

spent. Because reliability and safety are becoming more 

and more important, there is a greater focus on 

monitoring technical applications and processes 

(Isermann, R., 1984). Numerous studies on fault 

isolation and detection have been conducted in both 

academic and industrial domains within the past 30 

years. The primary goal of fault isolation and detection 

is to enable a process system to run properly without 

any malfunctions that could result in subpar 

performance or inappropriate behaviour. A number of 

system malfunctions, including sensor, actuator, and 

component faults, can happen in a healthy  

 

Figure 1: HSS process 

system. Actuators, sensors (instruments), or process 

elements themselves may all have flaws. Instrument 

fault detection (IFD), actuator fault detection (AFD), 
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and component fault detection (CFD) are the terms 

used to describe fault detection (FD) of these defects. 

Globally, there is a growing interest in the fundamental 

studies of fault detection and isolation (Frank, P. 

M.,1992). Analytical (i.e., functional) redundancy, as 

opposed to physical redundancy, is the foundation of 

the FD technique. This suggests that FD takes 

advantage of the built-in redundancy in the static and 

dynamic links between the system inputs and measured 

outcomes. Functional redundancy uses residuals as 

characteristics and deals with two or more functions 

that describe the same process (Gertler, J. J., 1988). 

Stubbs, S. et al. (2012) have described a simplified 

monitoring-specific canonical variate analysis (CVA) 

state space modelling approach for FD in dynamic 

processes. A more straightforward CVA state space 

model with three matrices was presented in their paper 

specifically for process monitoring. Fuzzy-model-based 

robust FD with stochastic mixed time delays and 

sequential packet dropouts was introduced by Dongo, 

H. et al. (2012). The network-based resilient FD 

problem for a class of uncertain discrete-time Takagi-

Sugeno fuzzy systems with sequential packet dropouts 

and stochastic mixed time delays is the focus of their 

research. In order to maintain guaranteed performance 

and exponentially stable FD dynamics, a fuzzy FD 

filter has been created. It has been demonstrated that 

artificial neural networks (ANN) are highly effective 

for modelling and controlling nonlinear systems 

(Narendra, K.S. and Parthasarathy, K., 1990) 

(Narendra, K. S., 1996). If feedback links are added, 

ANN can also be used to model nonlinear dynamic 

systems. High processing speeds, high input error 

tolerance, and adaptability are all features of neural 

networks. The artificial neural network (ANN) 

technique to fault identification and isolation has been 

proposed by numerous research and journal articles as a 

solution to modelling and classification issues in 

dynamic systems. In the last several years, RBFNNs 

have become incredibly popular as a substitute for the 

slowly convergent multi-layer perception. Like the 

multi-layer perception, the RBFNN can model any non-

linear function (Nelles, O., 2001) (Patan, K., 2008). 

RBFNNs were proposed by Yu et al. (1999) for the 

diagnosis of process faults. It was examined how to 

diagnose actuator, component, and sensor failures by 

using the output prediction error as a residual between a 

neural network model and a non-linear dynamic 

process. Finding a potent method for FD for the HSS is 

the primary goal of this study. Consequently, the 

application of the RBF artificial neural network (ANN) 

for modelling and  early FD in the HSS is suggested in 

this paper and will be used to identify various types of 

defects and therefore to avoid producing faulty parts. 

This sort of neural network has been chosen because it 

has a simple structure, and it is easy to train. This FD 

technique will be a significant contribution to the 

industry area if the simulation results are satisfactory 

and if the defects can be identified and detected. 

2 Neural Network Modelling 

2.1 Introduction 

An outstanding mathematical technique for handling 

non-linear issues is artificial neural networks (ANNs). 

They are particularly helpful in cases where the process 

has not been mathematically modelled, making it 

impossible to apply traditional techniques like 

observers or parameter estimation methods (Patan, K., 

2008). With minimal or no prior knowledge of the 

procedure, a neural network can use the learning 

method to extract the system attributes from past 

training data. This offers a tremendous deal of 

flexibility in modelling non-linear systems (Zhai, Y. J. 

and Yu, D. L., 2007). RBFNNs will be utilised in this 

project; they were selected due to their straightforward 

structure, can mimic any non-linear function and ease 

of training. 

 

2.2 RBFNNs structure 

Figure 2 depicts the architecture of RBFNNs. The 

RBFNN comprises three layers: the input layer, a single 

hidden layer, the non-linear layer, and the linear output 

layer. The input vector is denoted by x, the hidden layer 

output vector by h, the weight matrix by W, and the 

output vector by 𝒴̂ (Patan, K., 2008) (Zhai, Y. J. and 

Yu, D. L., 2007) (Oliver N. O., 2001). The network's 

size  
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Figure 2: The RBFNN Structure. 

 

affects training time. Consequently, the neural 

network's size should be modest in order to minimise 

training time; for this reason, the hidden layer has been 

selected as a single layer. In this study, using the K-

means clustering algorithm, the RBF centre is chosen 

from a set of training data. Reducing the total squared 

distances between each input data point and its closest 

centre is the aim of the activation functions in order to 

adequately cover the data (Zhai, Y. J. and Yu, D. L., 

2007) (Oliver N. O., 2001).  

3 HSS Modelling using RBFNN  

Over the past 30 years, artificial neural networks have 

been the subject of extensive research and have been 

effectively used for dynamic system modelling. Since 

neural networks can handle the most complex scenarios 

that are too poorly specified for deterministic 

algorithms to handle, they offer an intriguing and 

beneficial substitute for traditional approaches (Patan, 

K., 2008). This project models HSS using an RBFNN 

because it provides an excellent computational ability 

for handling non-linear challenges and training is 

extremely fast. 

 

3.1 Collecting data 

Getting appropriate data for training is the initial stage 

of modelling HSS using RBFNN. The goal of 

conducting an experiment scheme using such data is to 

manage the evaluated data as usefully as possible, 

subject to any available constraints, as the data will 

affect the network modelling implementation's 

accuracy. In order to ensure that the training data 

sufficiently covers the designated operating zone, the 

input signals must stimulate the process's dynamic 

modes at various frequencies. Lightbody, G. and Irwin, 

G. W., (1997) presented a mongrel irritation signal for 

neural network training. While identifying linear 

systems may merely require a constantly stimulating 

input signal, nonlinear system identification requires 

additional considerations. A neural network model's 

process modelling is divided into two sections: the 

process dynamics are captured in the first, while the 

basic nonlinear transmitter function is approximated in 

the second (Zhai, Y. J. and Yu, D. L., 2007). Five 

inputs were taken from the temperature data during the 

operation, and four inputs were the settings of the build 

process. A set of data was gathered for the nine input 

signals of the HSS. As an example, Figures 3 and 4 

display the temperature data both before and after 

filtration. Table 1 displays the data that was gathered. 

Utilising Eq. (1), the temperature data (T) is separated. 

 

𝑇𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡) = 𝜇𝑇      𝑇𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑(𝑡 − 1) + (1 − 𝜇𝑇)𝑇(𝑡)       (1)                                   

   

Where the value of µT, a low-pass filter coefficient, 

can be selected between 0 and 1. To improve the neural 

network's accuracy and reduce errors, all input data 

from HSS will be scaled to the (0, 1) range prior to 

training or validating the RBFNN. The output data is 

already 0 or 1, thus scaling is not necessary. 

Accordingly, a score of 0 indicates an unsuccessful 

build, while a score of 1 indicates a successful one. Eq. 

(2) makes use of the linear scale. 

 

𝒰𝑠(𝑡) =
𝒰 (𝑡)− 𝒰𝑚𝑖𝑛

𝒰𝑚𝑎𝑥− 𝒰𝑚𝑖𝑛
                                                             (2)                                                                                     

 

where 𝒰𝑠 is the scaled input and  𝒰𝑚𝑖𝑛  and  𝒰𝑚𝑎𝑥  are 

the data set's minimum and maximum inputs, 

respectively. The threshold was used to calculate the 

inaccuracy in order to assess the modelling effects. The 

Eq. (3) and (4) provide the inaccuracy. 

 

Error =  
1

𝑁 
∑ |𝑡𝑟 − 𝒴(𝑡)|𝑁

𝑡=1 =
1

𝑁 
∑ |𝑒 (𝑡)|𝑁

𝑡=1                       

(3)  
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MAE% = (
1

𝑁 
∑ |𝑌(𝑡) − 𝐸𝑟𝑟𝑜𝑟(𝑡)|𝑁

𝑡=1 ) ∗ 100                    

(4)                                                                                  

An average of absolute errors is called the MAE. 𝒴(𝑡) 

is the HSS model's output (predicted output), and tr is 

the threshold that is selected for modelling 

performance. Y(t) is the HSS's actual output. 

 

 

Figure 3: Temperature data before filtering 

 

 

Figure 4: Temperature data after filtering 

 

 

 

 

Table 1. The collected inputs data. 

Range  The input data  

47 and 53 Initial power input % (ip) 1 

1 and 5 Greyscale (gs) 
2 

142 and 

152 

Build overhead C˚ (bo) 
3 

35 and 70 Pre-head power % (pp) 
4 

134.4 and 

156.1 

Temperature at the second 

number 2000 (C˚) 

5 

142.7 and 

157 

Temperature data at one minute 

before the break point (C˚) 

6 

144.8 and 

157.1 

Temperature at the break point 

(C˚) 

7 

119.1 and 

133 

The minimum value of the 

temperature during the build 

operation (C˚) 

8 

 

 

The maximum value of the 

temperature during the build 

operation (C˚) 

9 

 

3.2 Model structure selection 

Identifying the RBFNN model's input variables is the 

second stage. As previously stated, the HSS to be 

simulated includes nine input variables, and one output 

vector has the values 0 and 1: (1) denotes a successful 

construction, whereas (0) denotes a failed build. The 

input from the network that caused the least oversights 

in modelling was chosen as shown in Figure 5. There 

are ten inputs and one output in the RBF model. 34 

nodes have been chosen as the hidden layer nodes. 

Prior to training, the K-means clustering approach was 

used to select 34 centers, and the p-nearest-neighbors 

algorithm was used to determine the width σ. The 

width was the same for all 34 hidden layer nodes' 

Gaussian functions. The recursive squares algorithm's 

weights W were utilised for training. 

 

0 1000 2000 3000 4000 5000 6000 7000
20

40

60

80

100

120

140

160

180

T
e
m

p
e
ra

tu
re

Samples

0 1000 2000 3000 4000 5000 6000 7000
40

60

80

100

120

140

160

T
e
m

p
e
ra

tu
re

Samples

The
temperature at
second 2000

The
temperature at
break point

The minimum value

The maximum value

The temperature at one minute 
before break point



SUSJ Vol. 15, No. 2 (2025) 42-49                                                                                                  Adnan Hamad 2025 

 

Open Access Article is distributed under a CC BY 4.0 Licence. 
46 

RBFNN

u(k)

y(k+1)

y (k)

 

Figure 5: Structure of the RBFNN model 

 

3.3 Training and validating the model 

The HSS system produced a data set of 49 samples in 

total. The 34 samples in the first batch were used to 

train neural networks, while the 15 samples in the 

second set were utilised to validate the model. The 

model training and validation results for the 15 samples 

in the test data set and the 34 samples in the training 

data set are displayed in Figure 6. In general, it is 

evident that the two outputs match well with a 

negligible error. The set of test data has a lower 

modelling error than the set of training. The modelling 

impacts are assessed using the mean absolute error 

(MAE %). The MAE value for this model is 0.0206. 

 

3.4 Simulation results 

Overall, a satisfactory prediction between the output of 

the HSS and the output of RBFNN was obtained. Also, 

the RBFNN model was trained and tested using 34 

hidden nodes, and the simulation results were excellent. 

Figure 6 shows that there is a very slight mismatch in 

the MAE between the RBFNN and the HSS output.  

 

 

Figure 6: HSS outputs and prediction of the RBF model 

3.5 Cross validation 

Since the model has previously seen the data, it is 

generally a methodological error to use the same data 

set for both training and testing.  Consequently, the 

model would just replicate the sample labels.  In that 

scenario, the model might produce flawless test results, 

but once it uses unseen data, it might not be able to 

predict any outcomes. Applying the cross-validation 

procedure while excluding a portion of the available 

training data set is necessary to solve this issue.  After 

the model has been trained, the deleted data will be 

regarded as fresh data and can be used to evaluate the 

model. The entire data set for this research consisted of 

49 samples, and cross validation was applied four 

times, using different data sets for training and 

validation each time. Eight samples for validation and 

forty-one samples for training were used in the cross-

validation. The model training and validation outcomes 

are displayed in Figures 7 - 14. Every figure has a 

threshold that is selected and shown in these figures as 

well. Additionally, the threshold for each figure is used 

to define the MAE%. The MAE% for each model 

throughout train and validation is finally determined by 

calculating the average value of the threshold. Each 

RBFNN trained model's hidden nodes and accuracy for 

the train and validation, respectively, are displayed in 

Tables 2–3. Additionally, as shown in Figures 15 -16, 

some of the input variables have been plotted in 3D to 

determine the correlation between them. 

 

 

Figure 7: RBFNN prediction and HSS output of the 

first model training 
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Figure 8: RBFNN prediction and HSS output of the 

first model validation 

 

Figure 9: RBFNN prediction and HSS output of the 

second model training 

 

Figure 10: RBFNN prediction and HSS output of the 

second model validation 

 

 

Figure 11: RBFNN prediction and HSS output of the 

third model training 

 

Figure 12: RBFNN prediction and HSS output of the 

third model validation 

 

 

Figure 13: RBFNN prediction and HSS output of the 

fourth model training 
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Figure 14: RBFNN prediction and HSS output of the 

fourth model validation 

Table 2. The trained models' accuracy. 

 

Accur

acy 

The 

mean 

Thres

hold 

Accur

acy 

Thres

hold 

Hid

-

den 

nod

es 

RBFN

N 

model 

97.55 

% 

0.0475 95.45 

% 

± 

0.05 

14 Model 

(1) 

97.56 

% 

0.0475 92.43 

% 

± 

0.05 

13 Model 

(2) 

97.53 

% 

0.0475 91.66 

% 

± 

0.05 

17 Model 

(3) 

97.55 

% 

0.0475 91.63 

% 

± 

0.04 

21 Model 

(4) 

97.54 

% 

 92.79 

% 

Average accuracy 

Table 3. The validation models' accuracy. 

 

Accura

-cy 

The 

mean 

Thresho

-ld 

Accura

-cy 

Thres

-hold 

RBFNN 

model 

99.87 % 0.025 99.63 % 0.03 Model 

(1) 

99.84 % 0.025 99.17 % 0.03 Model 

(2) 

99.80 % 0.025 99.53 % 0.02 Model 

(3) 

99.93 % 0.025 99.73 % 0.02 Model 

(4) 

99.86 %  99.51 % Average accuracy 

 

 

Figure 15: The correlation between break point and 

build overhead 

 

Figure 16: The correlation between pre-head power and 

initial power 

 

4 Conclusions 

This project has chosen the RBFNN to model the HSS 

process because it has an ability to model many non-

linear systems. The RBFNN and the training model 

have been presented and described in this paper. The 

input data set has been obtained from the experiment of 

the HSS build operation.  An RBF model was designed 

with 10 inputs and 1 output and the hidden layer nodes 

were selected for each model. RBFNN model was 

trained and tested using the collected data. Moreover, 

cross validation was applied 4 times in order to prove 

robust the RBFNN model. With only minor errors, the 

simulation results for model training and testing 

demonstrate good results and an excellent 

correspondence between the output of the HSS and 

RBFNN. As a result, any flawed build could be quickly 
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and easily identified before the process began. The 

accuracy and the average accuracy of train and test the 

proposed model are listed in Tables 2 and 3. 
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