Scientific Journal for faculty of Science - Sirte University

Volume1 Issue No.1 October 2021

Bi-annual Peer-review Journal

Legal Deposit Number: 990/2021

Sjsfsu@su.edu.ly
journal.su.edu.ly/index.php/JSFSU

Scientific Journal for the Faculty of Science-Sirte University (SJFSSU)

Journal home page: http://journal.su.edu.ly/index.php/JSFSU/index

The Role of F-doping and the Sintering Temperature on the Superconductivity and Lattice Constants in LaOFeGe Compounds

T. M. Fayez^{*1}, Ibrahim A. Saleh², Mustafah M. Abdullah Ahmad¹

¹ Physics Department, Science Faculty, Sebha University, Libya

² Physics Department, Science Faculty, Benghazi University, Libya

ARTICLE INFO

Article history:	The most promin		
Received 03 September 2021	transition temperature (Tons		
Received in revised form 21 September 2021	straight line (on		
Accepted 21 September 2021	temperature (T _{mi} becomes 50%		
Keywords:	temperature $(T_{\rho\approx 0}$ identically zero		
Superconductivity,	temperatures ass		
Quaternary oxypnictides,	samples are repo		
Electrical resistivity,	solid state reacti		
Fourpoint probe,	conduction layer. transition tempera		
Solid state reaction method.	Tonset, Tmidpoint, dependence of To		

ABSTRACT

ent indicator of superconductivity is the superconducting ature (T_c) that refers to three points. The onset transition _{set}) is defined as the deviation point away from the $\rho(T)$ set of the drop in resistivity). The midpoint transition idpoint) is defined as the temperature, where resistivity of its value at Tonset. The zero-resistance transition) is defined as the temperature, in which the resistance is or only immeasurably small. These indicators of ociated with some factors. In this article, the X-ray electrical resistivity measurements of LaO1-xFxFeGe rted. This compound was successfully synthesized via a on method with the presence of germanium Ge in the Furthermore, some factors affecting the superconducting ature were studied, which are the F-doping dependence of and lattice parameters, and sintering temperature dependence of T_{onset}.

1 Introduction

Iron-based LnOFeAs phase is not a superconductor and displayed an anomalous change in the slope of $\rho(T)$ resistivity measurement curve. The anomaly transition point related to the spin-density wave fluctuations and structural phase transition was at 150 (Kamihara et al., 2008), 145 (Chen et al., 2008), 155 (Prakash et al., 2010), 140 (Martinelli et al., 2008), 135 (Wang et al., 2008), and 124 K (Jun Li et al., 2008) for compounds LaOFeAs, CeOFeAs, PrOFeAs, SmOFeAs, GdOFeAs, and TbOFeAs, respectively. Conversely, nickel-based quaternary oxypnictides LaONiP and LaONiAs exhibited superconducting transition in resistivity measurements with critical transition temperature Tonset=4 K (T_{$p\approx0}=2 K$) (Watanabe et al. 2007, Tegel et</sub> al., 2008) and $T_{onset}=2.4$ K (Tp $\approx 0=2$ K) (Watanabe et al., 2008), respectively. Moreover, in iron-based 1111phase, only the LaOFeP compound (Liang et al., 2007, Hamlin et al., 2008) was a superconductor at Tonset=5 K $(T_{0\approx 0}=3.2 \text{ K})$ (Kamihara et al., 2006).

Superconductivity could be obtained from LnOFeAs phase through replacement of O²⁻ with F (i.e., F-doping), with the resulting phase being the LnO_{1-x}F_xFeAs compound. Superconducting transition temperature T_{onset} of LaO_{1-x}F_xFeAs was at 17 (Dong et al., 2008), 28 (Dong et al., 2008), 24.6 (Gao et al., 2008), and 30 K (Kamihara et al., 2008) for x=0.03, 0.06, 0.10, and 0.11, respectively. The F-doping dependence of T_c and T_{onset} on $LaO_{1\text{-}x}F_xFeAs$ (Kamihara et al., 2008), after superconductivity appears, T_c is nearly unchanged up to x=0.14, and the highest T_c=26 K (T_{onset}= 30 K) is attained at the Fcontent x=0.11.

Replacement La in LaO_{1-x}F_xFeAs compound with other rare earth elements (Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, and Tm) led to superconductors with T_{onset} > 28 K. T_{onset}=42.5 (Prakash et al., 2009), 52 (Ren et al., 2008), 52 (Jia et al., 2008), 56.1 (Wang et al., 2010, Iida et al., 2013), 36.6 (Peng et al., 2008), 45.9 (Bos et al., 2008, Kuzmicheva et al., 2018), and 45.4 K (Bos et al., 2008) for compounds CeO_{0.8}F_{0.2}FeAs, PrO_{0.89}F_{0.11}FeAs, NdO_{0.82}F_{0.18}FeAs, SmO_{0.8}F_{0.2}FeAs, CdO_{0.83}F_{0.17}FeAs, TbO_{0.8}F_{0.2}FeAs, and DyO_{0.9}F_{0.1}FeAs, respectively. Two rare earth elements, Eu and Tm, did not display superconducting transition in resistivity measurements of LnO_{0.84}F_{0.16}FeAs phase; instead, resistivity ρ (T) displayed metallic behavior (Gen-Fu et al., 2008).

Superconductivity in LnOFeAs phase can also be obtained by partially replacing the trivalent ion Ln³⁺ with a bivalent dopant, such as Sr²⁺, Pb²⁺, or a tetravalent dopant, such as Th⁴⁺ in the LnO layer. As a result, superconducting transition Tonset of superconductors Sr-doped La_{0.87}Sr_{0.13}OFeAs (Wen et al., 2008) and Pb-doped La8.0Pb0.2OFeAs (Che et al., 2008) was at 25.6 ($T_{\rho\approx0}$ =15 K) and 11.6 K ($T_{\rho\approx0}$ =9.7 K), respectively. In Th-doping, which provides the insulating layer with an extra positive charge, superconductors Nd_{0.8}Th_{0.2}OFeAs (Xu et al., 2008), Gd_{0.8}Th_{0.2}OFeAs (Wang et al., 2008), Tb_{0.9}Th_{0.1}OFeAs (Jun Li et al., 2008), and Tb_{0.8}Th_{0.2}OFeAs (Jun Li et al., 2008) were successfully synthesized, exhibiting transition temperature T_{onset} in resistivity measurements at 47, 56, 45, and 52 K, respectively, all higher than the recorded values for Sr- and Pb-doped compounds.

The third method of doping in the LnO layer consists of replacing the trivalent ion Ln^{3+} and monovalent ion F⁻ with two dopants, and is referred to as double doping. For K doping in $LaO_{1-x}F_xFeAs$ compound, the onset of superconducting transition was practically unaffected by the addition of K, with onset T_{onset} occurring at 26.20 and 26.45 K for $(La_{0.85}K_{0.15})(O_{0.85}F_{0.15})FeAs$ and $(La_{0.8}K_{0.2})(O_{0.8}F_{0.2})FeAs$, respectively (Prakash et al., 2008). Replacing potassium (K¹⁺) with Ce or Yb increased transition temperature T_{onset} to 29 K for $La_{0.2}Ce_{0.8}O_{0.9}F_{0.1}FeAs$ (Gen-Fu et al., 2008) and 31.3 K for $La_{0.9}Yb_{0.1}O_{0.8}F_{0.2}FeAs$ (Prakash et al., 2010).

Superconductivity can be also achieved by doping in the conduction layer MPn (M=transition metals, and Pn=pnictogen). For Co-doped LaOFe_{1-x}Co_xAs samples, the T_{onset} was at 11.2, 14.3, and 6 K for x=0.05, 0.11, and 0.15, respectively (Sefat et al., 2008). Co-doping for PrOFe_{1-x}Co_xAs samples showed T_{onset} at 4.7, 14.2, and 5.9 K for x=0.05, 0.1, and 0.15, respectively (Prakash et al., 2010). For SmOFe_{1-x}Co_xAs samples, T_{onset} (=15.2 K) was unchanged at two levels of doping x=0.10 and 0.15 (Qi et al., 2008), whereas T_{onset} was affected by the change in doping from x=0.10 to x=0.15 for Co-doping in La-oxypnictide and Proxypnictide samples. Ir-doped SmOFe_{0.85}Ir_{0.15}As compounds provided the critical transition temperature Tonset close to 17.3 K (Chen et al., 2009), which is greater than that for Co-doping. In (Singh et al., 2009), researcher reported one case of increased transition temperature T_{onset} with doping in the conducting layer when LaO_{0.8}F_{0.2}FeAs was synthesized with Sb-doping. The doping in this case was in both layers and led to the enhancement of transition temperature to 30.1 K for compound LaO_{0.8}F_{0.2}FeAs_{0.95}Sb_{0.05}. Singh et al. (Singh et al., 2014) prepared the SmO_{0.88}F_{0.12}FeAs_{1-x}P_x compound with double-doping in both layers, and they observed a suppression in the superconducting transition temperature.

The critical superconducting transition temperature for 1111-oxyarsenide compounds is affected by a number of factors, mainly the density of conduction carriers in the insulating and conduction layers, which is altered with doping. Although hole or electrondoping suppressed the anomalous behavior to induce superconductivity, some phases did not show superconductivity: La_{0.80}Sr_{0.20}OFeAs (Tonset=25.6 K for x=0.13) (Wen et al., 2008), LaOFe_{0.80}Co_{0.20}As (T_{onset}=14.3 K for x=0.11) (Sefat et al., 2008), PrOFe_{0.70}Co_{0.30}As (T_{onset}=14.2 K for x=0.10) (Prakash et al., 2010), $EuO_{0.84}F_{0.16}FeAs$, and $TmO_{0.84}F_{0.16}FeAs$ (Gen-Fu et al., 2008). For nonsuperconducting La_{0.80}Ce_{0.20}OFeAs compound (Che et al., 2008), the doping was at the same oxidation state (La^{3+}) was replaced with Ce^{3+}), and as a result, anomaly point T_{anom} still existed and appeared at 155 K.

Concentration and lattice parameters are also factors that affect superconducting transition temperature. Doping dependence of T_c , a, and c for hole-doped La_{1-x}Sr_xOFeAs sample showed that a and c increased monotonously with Sr-doping concentration and a consequent increase in T_c . This expansion in lattice constants is because the radius of Sr²⁺ is larger than that of La³⁺ (Mu et al., 2008). In contrast with electron doping, T_c increased with the shrinkage of lattice parameters, whereby the electron-doped SmO_{1-x}F_xFeAs sample showed that a and c decreased monotonously with the increase in F-doping concentration x in the range of $0 \le x \le 0.20$, and T_c increased with the increase in concentration x in the same range (Yang et al., 2009).

When hole doping was applied in the FeAs layer for PrOFe_{1-x}Co_xAs sample, the lattice parameters decreased with the increase in Co concentration x (0 < x < 0.3), but T_c increased from 4.7 K for x=0.05 to 14.2 K for x=0.1. However, transition temperature T_c decreased with higher Co-doping concentration x > 0.1 (T_c =5.9 K for x=0.15, T_c =4 K for x=0.20 and 0.30) (Prakash et al., 2010). A similar behavior of doping dependence of T_c , a, and c in double-doped compound La_{1-x}Ce_xO_{0.9}F_{0.1}FeAs (x=0, 0.2, 0.4, 0.6, and 0.8) was observed. Lattice parameters a and c slightly decreased with the change in Ce concentration (a=4.029°A and c= 8.726°A at x=0, and a=3.994°A, c=8.598°A at x=0.8) whereas T_c increased from 24.99 K at x=0 to 29 K at

x=0.8 with the presence of an abnormal point in the phase diagram $T_c(x)$ at x=0.60 (T_c = 28.01 K) (Che et al., 2008). In contrast to the case of La₁. $_xCe_xO_{0.9}F_{0.1}FeAs$, the transition temperature for LaO_{0.8} $F_{0.2}FeAs_{1-x}Sb_x$ compound (double-doping in both layers) decreased from 30.1 K at Sb concentration x=0.05 to 28.6 K at Sb concentration x=0.10. However, by increasing the doping level from x=0.05 to x=0.10, lattice parameters *a* and *b* increased because of the larger size of the Sb ion compared with the As ion (Singh et al., 2009).

The effect of sintering temperature on the superconducting properties of SmO_{0.8}F_{0.2}FeAs was reported by Wang et al. (Wang et al., 2010). Onset transition temperature of the samples sintered at 850 °C was 53.5 K. Samples sintered at 1000 °C displayed a transition temperature of 56.1 K whereas those sintered at 1200 °C displayed a transition temperature of 50.8 K. Samples sintered at 1000 °C had the highest transition temperature, the lowest $\rho(T)$, and the highest residual resistivity ratio $\rho(300 \text{ K})/\rho(57 \text{ K})$, indicating low impurity scattering and enhanced carrier density (Wang et al., 2010). However, the highest onset transition temperature was related to specific sintering temperature, where Tonset was 41 K for SmO_{0.7}F_{0.3}FeAs sample sintered by a two-step approach at 500 °C for 15 h and then at 900 °C for 40 h (Wang et al., 2010), and it was 54.6 K for sintering at 1160 °C for 40 h (Ma et al., 2008).

2 Materials and Methods

A polycrystalline sample of $LaO_{1-x}F_xFeGe$ (x=0, 0.11, 0.13) was synthesized by heating a mixture of high-purity starting materials (i.e., dehydrated La_2O_3 , Fe, LaF_3 powders, Ge grains, and La pieces), which were weighed with stoichiometric amounts of molar mass according to nominal compositions in the following formula for undoped compound LaOFeGe:

$$La+3Fe+3Ge+La_2O_3 \rightarrow 3LaOFeGe \tag{1}$$

For F-doped compound, the stoichiometric formula is:

$$(1+x) La + 3Fe + 3Ge + (1-x) La_2O_3 + x LaF_3 \rightarrow 3LaO_{1-x}F_xFeGe$$
 (2)

The present method involves two steps. First, 2 g of the starting materials (Table 1) were mixed thoroughly, pressed into a pellet 13 mm in diameter through a manual hydraulic press under a load of 12 metric tons, and then placed between two boats of Tungsten inside a chamber evacuated at 10^{-5} Torr. The pellet was heated at high current by electrical poles at both ends of the boats. Current was applied in the following order: 120 A for 2 h, 160 A for 3 h, and 100 A for 2 h. The product was smashed and grinded at each electric current set-up to make it more homogeneous and was then pressed into a pellet. Second, the final pellet was sealed in an evacuated silica tube at 10^{-3} Torr and then

annealed in a furnace under the following conditions: 500 °C for 12 h, 600 °C for 24 h, and 800 °C for 12 h. Then, the pellet was cooled to room temperature gradually. In heat treatments, an electric current of 160 A through the boats (heating source) causes a temperature of around 1000 °C, which is appropriate for solid-state reaction with consideration for the comparison of melting-point temperatures of the starting materials. Heat treatment for a long time was conducted in the furnace, where the samples were first heated at 500 °C and then sintered at a temperature range of 600 °C (i.e., 2/3 of the melting point of La and Ge) to 800 °C (i.e., 6/7 of the melting point of La and Ge), which is the most suitable temperature range to obtain an adequately annealed sample. Sample preparation, except for the annealing, was conducted in a glove box under high-purity Nitrogen. The samples were cut and polished into a thin bar shape 6 mm long, 1 mm wide, and 1 mm thick for use in measuring DC resistivity.

Table 1. Stoichiometric amounts for starting materials of nominal compositions $LaO_{1-x}F_xFeGe$ according to formulas 1 and 2.

	Starting materials (gm)				
Content	La	Fe	Ge	La_2O_3	LaF ₃
X	Purity:	99.9%	99.999%	99.5%	99%
	99.9%				
0	0.3268	0.3941	0.5127	0.7664	0
0.11	0.3623	0.3937	0.5121	0.6813	0.0506
0.13	0.3688	0.3936	0.5119	0.6659	0.0598

3 Results

Figure 1 shows the X-ray diffraction patterns of $LaO_{1-x}F_xFeGe$ (x=0, 0.11, 0.13). All main peaks of the samples can be well determined based on the tetragonal oxypnictide structure LnOMPn, which is indexed to the tetragonal ZrCuSiAs-type structure reported previously (Kamihara et al., 2008, Liang et al., 2007, Hamlin et al., 2008, Kamihara et al., 2006, Che et al., 2008, Chen et al., 2008, Gao et al., 2008). A small amount of the impurity phases LaOF and Fe₂Ge were detected. Secondary phases were observed in most LnOMPn oxypnictide phases (Kamihara et al., 2008, Gao et al., 2008).

The lattice parameters a and c (table 2) were calculated by the least-squares method of the measured peak positions using equation:

$$\sin^2(\theta_{hkl}) = \frac{\lambda^2}{4} \left(\frac{h^2 + k^2}{a^2} + \frac{l^2}{c^2} \right)$$
(3)

For electrical resistivity measurements $\rho(T)$, table 2 shows the F-doping dependence of T_{onset},

 $T_{midpoint}$ and lattice parameters for LaO_{1-x}F_xFeGe samples. The effect of sintering temperature on the transition temperature of F-content samples as shown in table 3.

Figure 1. X-ray diffraction pattern of the nominal $LaO_{1-x}F_xFeGe$ samples. The impurity phases LaOF and Fe₂Ge are marked by an asterisk.

Table 2. F-doping dependence of T_{onset} , $T_{midpoint}$, and lattice parameters for LaO1-xFxFeGe compound.

F content	Tonset	T _{midpoint}	a [nm]	c [nm]
0	-	-	0.380686	0.815796
0.11	19.7	18.8	0.38178	0.81367
0.13	21.3	20.6	0.379226	0.808415

Table 3. Sintering temperature dependence of transition temperature for $LaO_{1,x}F_xFeGe$ compound.

Sintering temperature [K]	800	850	900
F content		Tonset [K]	
x=0.11	19.7	21.2	20.3
x=0.13	21.3	22.1	22.3

4 Discussion

parameters The lattice of LaOFeGe. a=0.380686 nm and c=0.815796 nm, were found to be smaller than those of the LnOFeAs family reported previously (Kamihara et al., 2008, Chen et al., 2008, Wang et al., 2008, Bos et al., 2008, Chen et al., 2009). Considering that F- has a smaller ionic size than O2-, the peaks shifted to the right-hand side for the F-doped samples. In comparison with the undoped sample, the lattice parameters of F-doped samples decrease with greater F-doping concentration. This result indicates the successful substitution of O by F. For x=0.11, a=0.381786 nm, and c=0.813679 nm and for x=0.13, a=0.379226 nm, and c=0.808415 nm, the c-lattice parameter decreased with the increase in x content (x=0, 0.11, 0.13). By comparing the *a*-lattice parameter with the increase in x content for all samples with each other, the *a* (x=0.13) < *a* (x=0) and *a* (x=0.13) < *a* (x=0.11). However, an expansion in the *a*-lattice parameter was observed, *a* (x=0.11) > *a* (x=0), which is attributed to the impurity phase stacking along the *a*-axis of the x=0.11 phase.

As shown in table 2, T_{onset} and $T_{midpoint}$ increase slightly with increasing F-doping content. For table 3, onset transition temperature of the sample x=0.11 sintered at 800°C was 19.7 K. Sample sintered at 850°C displayed a transition temperature of 21.2 K whereas those sintered at 900°C displayed a transition temperature of 20.3 K. Samples (x=0.11 and 0.13) sintered at 850 °C had the highest transition temperature.

5 Conclusion

The quaternary compound $LaO_{1-x}F_xFeGe$ were prepared using a two-step solid-state reaction method because the method gives a more homogeneous sintering of the compound in two separate steps of heat treatment. Moreover, this method enables the formation of the initial binary phases when most of the raw materials are direct chemical elements with one or two compounds. The crystal structure of tetragonal LnOMPn oxypnictide (Ln=rare-earth, M=transition metals, and Pn=pnictogen) is characterized by the lattice parameters *a* and *c*. The content x, ionic size of the dopant, and sintering temperature, all affect lattice parameters.

The majority of undoped tetragonal LnOMPn oxypnictides are not superconductors, and only some phases, such as LaOFeP and LaONiP, exhibit a transition to the superconducting state. According to the available data, superconductivity occurs exclusively in oxyarsenide phases under the required condition of electron or hole doping. The previous experimental material suggests that a number of factors affect the critical transition temperature for superconducting 1111 oxypnictides. Doping levels, as well as external factors temperature such as sintering all affect superconductivity. In general, no direct evidence or rule has been discussed to predict the transition behavior in resistivity after doping. However, certain factors cause changes in the interactions among electrons (i.e., electron scattering and electron-phonon scattering).

Conflict of interest: The authors declare that there are no conflicts of interest.

References

Y. Kamihara, T. Watanabe, M. Hirano and H. Hosono. (2008) Iron-based layered superconductor La[O_{1-x}F_x]FeAs (x=0.05-0.12) with $T_c=26$ K, Journal of the American Chemical Society. 130(11), pp.3296-3297.

- G. F. Chen, Z. Li, D. Wu, G. Li, W. Z. Hu, J. Dong, P. Zheng, J. L. Luo and N. L. Wang. (2008) Superconductivity at 41 K and its competition with spin-density-wave instability in layered CeO_{1-xFx}FeAs. Physical Review Letters. 100(24), pp.247002.
- J. Prakash, S. J. Singh, D. Das, S. Patnaik and A. K. Ganguli. (2010) New oxypnictide superconductors: PrOFe_{1-x}Co_xAs. Journal of Solid State Chemistry. 183(2), pp.338-343.
- A. Martinelli, M. Ferretti, P. Manfrinetti, A. Palenzona, M. Tropeano, M. R. Cimberle, C. Ferdeghini, R. Valle, C. Bernini, M. Putti and A. S. Siri. (2008) Synthesis, crystal structure, microstructure, transport and magnetic properties of SmFeAsO and SmFeAs(O0.93F0.07). Superconductor Science and Technology. 21(9), pp.095017.
- C. Wang, L. Li, S. Chi, Z. Zhu, Z. Ren, Y. Li, Y. Wang, X. Lin, Y. Luo, S. Jiang, X. Xu, G. Cao and Z. Xu. (2008) Thorium-doping-induced superconductivity up to 56 K in Gd_{1-x}Th_xFeAsO. Europhysics Letters. 83(6), pp.67006.
- L. -Jun Li, Y. -Ke Li, Z. Ren, Y. -Kang Luo, X. Lin, M. He, Q. Tao, Z. -Wei Zhu, G. -Han Cao and Z. -An Xu. (2008) Superconductivity above 50 K in Tb_{1-x}Th_xFeAsO. Physical Review B. 78(13), pp.132506.
- T. Watanabe, H. Yanagi, T. Kamiya, Y. Kamihara, H. Hiramatsu, M. Hirano and H. Hosono. (2007) Nickel-based oxyphosphide superconductor with a layered crystal structure LaNiOP. Inorganic Chemistry. 46(19), pp.7719-7721.
- M. Tegel, D. Bichler and D. Johrendt. (2008) Synthesis, crystal structure and superconductivity of LaNiPO. Solid State Sciences. 10(2), pp.193-197.
- T. Watanabe, H. Yanagi, Y. Kamihara, T. Kamiya, M. Hirano and H. Hosono. (2008) Nickel-based layered superconductor LaNiOAs. Journal of Solid State Chemistry. 181(8), pp.2117-2120.
- C. Y. Liang, R. C. Che, H. X. Yang, H. F. Tian, R. J. Xiao, J. B. Lu, R. Li and J. Q. Li. (2007) Synthesis and structural characterization of LaOFeP superconductors. Superconductor Science and Technology. 20(7), pp.687-690.
- J. J. Hamlin, R. E. Baumbach, D. A. Zocco, T. A. Sayles and M. B. Maple. (2008) Superconductivity in single crystals of LaFePO. Journal of Physics: Condensed Matter. 20(36), pp.365220.
- Y. Kamihara, H. Hiramatsu, M. Hirano, R. Kawamura, H. Yanagi, T. Kamiya and H. Hosono. (2006) Ironbased layered superconductor: LaOFeP. Journal of the American Chemical Society.128(31), pp.10012-10013.

- J. Dong, H. J. Zhang, G. Xu, Z. Li, G. Li, W. Z. Hu, D. Wu, G. F. Chen, X. Dai, J. L. Luo, Z. Fang and N. L. Wang. (2008) Competing orders and spin-densitywave instability in La(O_{1-x}F_x)FeAs. Europhysics Letters. 83(2), pp.27006.
- Z. Gao, L. Wang, Y. Qi, D. Wang, X. Zhang and Y. Ma. (2008) Preparation of LaFeAsO_{0.9}F_{0.1} wires by the powder-in-tube method. Superconductor Science and Technology. 21(10), pp.105024.
- J. Prakash, S. J. Singh, S. Patnaik and A. K. Ganguli. (2009) Superconductivity in CeO_{1-x}F_xFeAs with upper critical field of 94 T. Physica C. 469(2-3), pp.82-85.
- Z. A. Ren, J. Yang, W. Lu, W. Yi, G. C. Che, X. L. Dong, L.
 L. Sun and Z. X. Zhao. (2008) Superconductivity at 52 K in iron based F doped layered quaternary compound Pr[O_{1-x}F_x]FeAs. Materials Research Innovations. 12(3), pp.105-106.
- Y. Jia, P. Cheng, L. Fang, H. Luo, H. Yang, C. Ren, L. Shan, C. Gu, and Hai-Hu Wen. (2008) Critical fields and anisotropy of NdFeAsO_{0.82}F_{0.18} single crystals. Applied Physics Letters. 93(3), pp.032503.
- C. Wang, Z. Gao, L. Wang, Y. Qi, D. Wang, C. Yao, Z. Zhang and Y. Ma. (2010) Low-temperature synthesis of SmO_{0.8}F_{0.2}FeAs superconductor with T_c=56.1 K. Superconductor Science and Technology. 23(5), pp.055002.
- K. Iida, J. Hanisch, C. Tarantini, F. Kurth, J. Jaroszynski, S. Ueda, M. Naito, A. Ichinose, I. Tsukada, E. Reich, V. Grinenko, L. Schultz, B. Holzapfel. (2013) Oxypnictide SmFeAs(O,F) superconductor: a candidate for high-field magnet applications, Scientific Reports. 3:2139, pp.1-5.
- C. Peng, F. Lei, Y. Huan, Z. XiYu, M. Gang, L. HuiQian, W. ZhaoSheng and W. HaiHu. (2008) Superconductivity at 36 K in gadolinium-arsenide oxides GdO_{1-x}F_xFeAs. Science China Physics, Mechanics and Astronomy. 51(6), pp.719-722.
- J.-W. G. Bos, G. B. S. Penny, J. A. Rodgers, D. A. Sokolov, A. D. Huxley and J. P. Attfield. (2008) High pressure synthesis of late rare earth RFeAs(O,F) superconductors; R=Tb and Dy. Chemical Communications. 31, pp.3634-3635.
- T. Kuzmicheva, A. Sadakov, A. Muratov, S. Kuzmichev, Y. Khlybov, L. Kulikova, Y. Eltsev. (2018) Magnetic, superconducting and electron-boson properties of GdO(F)FeAs oxypnictides, Physica B: Condensed Matter. 536, pp.793-797.
- C. Gen-Fu, L. Zheng, W. Dan, D. Jing, L. Gang, H. Wan-Zheng, Z. Ping, L. Jian-Lin and W. Nan-Lin. (2008) Element substitution effect in transition metal oxypnictide Re(O_{1-x}F_x)TAs (Re=rare earth, T=transition metal). Chinese Physics Letters. 25(6), pp.2235-2238.

- Hai-Hu Wen, G. Mu, L. Fang, H. Yang and X. Zhu. (2008) Superconductivity at 25 K in hole doped (La_{1-x}Sr_x)OFeAs. Europhysics Letters. 82(1), pp.170
- . C. Che, L. Wang, Z. Chen, C. Ma, C. Y. Liang, J. B. Lu, H. L. Shi, H. X. Yang and J. Q. Li. (2008) Superconductivity in (La_{1-x}Ce_x)(O_{0.9}F_{0.1})FeAs and (La_{1-x}Pb_x)OFeAs. Europhysics Letters. 83(6), pp.66005.
- M. Xu, F. Chen, C. He, H-W. Ou, J-F. Zhao and D-L. Feng. (2008) Synthesis of a new member in iron-based layered superconductor: Nd_{0.8}Th_{0.2}OFeAs with T_c=38K. Chemistry of Materials. 20(23), pp.7201-7203.
- J. Prakash, S. J. Singh, S. L. Samal, S. Patnaik and A. K. Ganguli. (2008) Potassium fluoride doped LaOFeAs multi-band superconductor: Evidence of extremely high upper critical field. Europhysics Letters. 84(5), pp.57003.
- J. Prakash, S. J. Singh, S. Patnaik and A. K. Ganguli. (2010) Superconductivity at 31.3 K in Yb-doped La(O/F)FeAs Superconductors. Journal of Chemical Sciences. 122(1), pp.43-46.
- A. S. Sefat, A. Huq, M. A. McGuire, R. Jin, B. C. Sales, D. Mandrus, L. M. D. Cranswick, P. W. Stephens and K. H. Stone. (2008) Superconductivity in LaFe_{1-x}Co_xAsO. Physical Review B. 78(10), pp.104505.
- Y. Qi, Z. Gao, L. Wang, D. Wang, X. Zhang and Y. Ma. (2008) Superconductivity in Co-doped SmFeAsO, Superconductor Science and Technology. 21(11), pp.115016.
- Y. L. Chen, C. H. Cheng, Y. J. Cui, H. Zhang, Y. Zhang, Y. Yang and Y. Zhao. (2009) Ir doping-induced superconductivity in the SmFeAsO system. Journal of the American Chemical Society. 131(30), pp.10338-10339.
- S. J. Singh, J. Prakash, S. Patnaik and A. K. Ganguli. (2009) Enhancement of the superconducting transition temperature and upper critical field of LaO_{0.8}F_{0.2}FeAs with antimony doping. Superconductor Science and Technology. 22(4), pp.045017.
- S. J. Singh, Jun-ichi Shimoyama, A. Yamamoto, H. Ogino and K. Kishio. (2014) Effects of phosphorous doping on the superconducting properties of SmFeAs(O,F), Physica C: Superconductivity and its Applications. 504, pp.19-23.
- G. Mu, L. Fang, H. Yang, X. Zhu, P. Cheng and Hai-Hu Wen. (2008) Doping dependence of superconductivity and lattice constants in hole doped La_{1-x}Sr_xFeAsO. Journal of the Physical Society of Japan. 77, pp.15-18.
- J. Yang, Z.-An Ren, G.-Can Che, W. Lu, X.-Li Shen, Z.-Cai Li, W. Yi, X.-Li Dong, Li-Ling Sun, F. Zhou and

Z.-Xian Zhao. (2009) The role of F-doping and oxygen vacancies on the superconductivity in SmFeAsO compounds. Superconductor Science and Technology. 22(2), pp.025004.

- L. Wang, Y. Qi, D. Wang, Z. Gao, X. Zhang, Z. Zhang, C. Wang and Y. Ma. (2010) Low-temperature synthesis of SmFeAsO_{0.7}F_{0.3-δ} wires with a high transport critical current density. Superconductor Science and Technology. 23(7), pp.075005.
- Y. Ma, Z. Gao, L. Wang, Y. Qi, D. Wang and X. Zhang. (2008) One step synthesis of SmO_{1-x}F_xFeAs bulks with T_c=54.6 K: High upper critical field and critical current density. arXiv:0806.2839.
- G. F. Chen, Z. Li, G. Li, J. Zhou, D. Wu, J. Dong, W. Z. Hu, P. Zheng, Z. J. Chen, H. Q. Yuan, J. Singleton, J. L. Luo and N. L. Wang. (2008) Superconducting properties of the Fe-based layered superconductor LaFeAsO_{0.9}F_{0.1-δ}. Physical Review Letters. 101(5), pp.057007.
- Z. Gao, L. Wang, Y. Qi, D. Wang, X. Zhang and Y. Ma. (2008) Preparation of LaFeAsO0.9F0.1 wires by the powder-in-tube method. Superconductor Science and Technology. 21(10), pp.105024.

Scientific Journal for faculty of Science Sirte University

sjsfsu@su.edu.ly \bowtie journal.su.edu.ly/index.php/JSFSU

🖄 media92production@gmail.com

