

18
Corresponding author: E-mail: um-.mohamed@sebhau.edu.ly SJFSSU 2023

Scientific Journal for the Faculty of Science-Sirte University Vol. 3, No. 2 (2023) 18-28

A Comparison of the Effectiveness of Artificial Neural Network Models for Time

Series Data Prediction

Umalkher S. Mohamed

Computer Science Department, Education Faculty, Sebha University, Ghat, Libya.

DOI: https://doi.org/10.37375/sjfssu.v3i2.1516

A B S T R A C T

ARTICLE INFO:

Received: 13 June 2023

Accepted: 25 September 2023

Published: 26 October 2023

Stock market prediction has become an important research area. During the last

few years, various Artificial Neural Networks (ANNs) models have been proposed

for stock market prediction problems. This study aims to compare the prediction

performance of three artificial neural network techniques, i.e., Back Propagation

Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), and

Long Short-Term Memory (LSTM) in predicting the close prices of the next day.

The data used in this study includes the daily close prices of two companies,

Microsoft (MSFT) and Apple Inc. (AAPL), belonging to the NASDAK-100 stock

exchange. The models were employed using Python software, a single hidden

layer prediction model was constructed, and the effect of prediction accuracy on

the number of neurons was identified. The performance of the models is measured

in terms of their Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),

Mean Absolute Percentage Error (MAPE), and R-squared (R2) score values. The

experimental results indicated that the LSTM forecasting model outperformed

alternative models with a high degree of accuracy and was found to be very

efficient in learning time series data.

Keywords: Stock prices, Prediction models,
artificial neural network, Time series data.

1 Introduction

Stock market prediction is an attractive topic for

investors and researchers and has become an essential

component in the financial field. Stock market prediction

aims at building models based on past prices to simulate

the future price, which is important for financial

organizations It plays an increasingly important role in

that it has a great impact on leading a proper decision on

financial institutions, thus making a better profit.

However, predicting the stock price itself is a challenging

task due to its complex characteristics; stock markets are

dynamic, nonlinear, complicated, nonparametric,

chaotic, and exhibit wide variation (Binkowski et al.,

2018, Shah et al., 2019). Accordingly, various solution

techniques have been proposed for obtaining accurate

prediction results over the years. Early techniques

involved statistical methods such as Autoregressive

Moving Average (ARMA) model (Rubi et al., 2022,

Moradi et al., 2021) and Logistic Regression (LR) (Chen

et al., 2020) (Mansouri et al., 2016). Such

techniques treat the stock price movement as a function

of a time series and are solved as a regression problem.

However, the stock market has high volatility in nature.

These statistical methods may suffer from difficulty in

revealing the internal laws of the stock market. With

recent developments in Computer Science, more

developing techniques have been proposed to analyze

nonlinear relationships in financial time series using

Artificial Intelligence (AI) techniques.

Most previous studies in this area showed that AI

techniques such as Artificial Neural Networks (ANN)

(Gao et al., 2020), Fuzzy Logic (FL)(Hašková et al.,

2023), Genetic Algorithm (GA) (Jafari et al., 2019),

Support Vector Machine (SVM)(Kurani et al., 2023)

are found to be more efficient than statistical methods. AI

techniques have the capability of detecting the structures

and nonlinear patterns of data (Mokhtari et al., 2021,

Scientific Journal for the Faculty of Science-Sirte University

Journal home page: http://journal.su.edu.ly/index.php/JSFSU/index

DOI: 10.37375/issn.2789-858X

mailto:um-.mohamed@sebhau.edu.ly
http://journal.su.edu.ly/index.php/JSFSU/index
http://journal.su.edu.ly/index.php/JSFSU

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

19
Open Access Article is distributed under a CC BY 4.0 Licence.

Chen et al., 2018). In the most existing prediction

methods, Neural Networks (NNs) models have

been used in numerous studies for stock price prediction,

and have revealed the superiority in solving nonlinear

problems(Vijh et al., 2020, Nikou et al., 2019) (Siami-

Namini et al., 2018, Moghar and Hamiche, 2020, Vijh et

al., 2020). This advantage comes from the capability

of NNs to model nonlinear techniques without previous

information about the processing techniques, which can

be very powerful for predicting the stock market. ANN

has the benefit of storing experiential knowledge and

making it accessible for use. Additionally, it has the

advantages of automatic learning of features, high

generalization and identification of unseen data. Thus,

ANN has attracted the attention of many researchers.

The first contribution of this study is the development of

three artificial neural networks models, namely, Back

Propagation Neural Network (BPNN), Radial Basis

Function Neural Network (RBFNN), and Long Short-

Term Memory (LSTM) for stock market prediction

problems. The second contribution of this work is the

comparison of forecasting performance of the proposed

models, our aim is to verify which method is effective in

predicting next day closing prices. This study focused on

the daily stock close prices of two companies i.e.,

Microsoft (MSFT) and Apple Inc., which are from

January 26, 2017, to December 26, 2020. The data of our

experiment was collected from the Yahoo Finance

website. Our dataset is divided into training sets which is

used to train the model and update the model parameters,

and test sets which would be used for testing so that we

can use the data to optimize the model for data prediction.

Similar input datasets were used to enable comparison

between the proposed models. The performances were

evaluated based on four metrics: Root Mean Squared

Error (RMSE), Mean Absolute Error (MAE), Mean

Absolute Percentage Error (MAPE), and R squared (R2)

score values. The rest of this paper is structured as

follows. A literature review of the related studies is

presented in Section 2. The descriptions of the artificial

neural network techniques are given in Section 3.

Martials and methods of our research are described in

Section 4, we introduce our dataset and describe the

evaluation indicators of our experiment, and we explain

our experimental procedures. The experiential results and

discussion are detailed in Section 5, a comparison of the

effectiveness of the proposed methods based on obtained

results explained in this section. Finally, the paper is

concluded in Section 6.

2 Related Work

The effectiveness of neural networks for stock market

prediction problems has been examined for many years.

Prediction of stock price movements was explored in

(Ramesh et al., 2019), the authors presented a detailed

analysis to show the efficiency of Back Propagation

Neural Network (BPNN) model in predicting stock

returns. They explained the importance of the choice of

activation function, learning rate, and the number of

neurons in the hidden layer to increase the performance

of the BPNN. The results of their work were compared

with a Multiple Linear Regression (MLR) model, and

they found that the BPNN based model gave better

results in predicting stock returns with good accuracy.

The authors in (Song et al., 2018) evaluated the

performance of neural network models in stock market

index perdition using adjusted close prices of

three different stocks, namely Bank of China, Vanke A,

and Kweichou Moutai. They reported a comparison

between BPNN, Radial Basis Function Neural Network

(RBFNN), General Regression Neural Network

(GRNN), Support Vector Regression (SVR), and Least

Squares Support Vector Regression (LS-SVR). The

performance of the proposed models is evaluated using

statistical indicators such as Adopting Mean Square Error

(AMSE) and Mean Absolute Percentage Error (MAPE).

They observed that the BPNN model outperforms the

other four models. The performance of ANN was also

investigated in (Mansor et al., 2020). Their work aims

to compare the predictive performance of five neural

network architectures, namely: Multiple Linear

Regression (MLR), Elman Neural Network (ENN)

Elman, Jordan Neural Network (JNN), Radial Basis

Function (RBF), and Multilayer Perceptron (MLP), in

predicting six traded stocks of the Brazilian stock

exchange. They use the test data to tune the number of

input variables and suitable hidden layers. The models

were trained to predict the closing price of the next day

from the previous values. The performance of all fitted

models was assessed by the Root Mean Square Error

(RMSE). In their results, they found that the ENN, JNN,

MLP, and MLR networks presented quite similar RMSE

for all times series analyzed in their research and the

MLR may be tuned to provide results quite similar to

more complicated models such as the MLP, ENN, and

JNN neural networks, since it provides the best result

.The performance of the neural network was also

investigated in (Moghar and Hamiche, 2020) using

LSTM for forecasting two stocks on the New York Stock

Exchange (NYSE), i.e., Google (GOOG) and Nike

(NKE) stock prices extracted from the Yahoo Finance

website. The reported results indicated that the proposed

Long Short-Term Memory (LSTM) model could

improve forecasting accuracy and is capable of tracing

the evolution of stock prices for both stocks. A

comparison study was reported in (Tiwari et al., 2020).

The authors compared ANN and Fuzzy Logic (FL) in a

problem of stock market prediction using the daily

historical prices listed on the Bombay Stock Exchange

(BSE). A Back Propagation (BP) algorithm was used to

train the neural network. The experimental results of their

work revealed that the neural network gave better

prediction results in terms of the minimum value of mean

square error. The authors in (Nabipour et al., 2020)

conducted a comparison study between Decision Tree

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

20
Open Access Article is distributed under a CC BY 4.0 Licence.

(DT), Random Forest (RF), Adaptive Boosting

(Adaboost), Extreme Gradient Boosting (XGBoost),

Support Vector Classifier (SVC), Nave Bayes (NB), K-

Nearest Neighbors (KNN), Logistic Regression (LR),

and ANN and two deep learning methods, Recurrent

Neural Network (RNN) and LSTM. Ten years of

historical data from four stock markets, namely

Petroleum, Diversified Financials, Basic Metals, and

Non-Metallic Minerals, were used. Ten technical

indicators from the selected historical data were chosen

as input values. They conclude that RNN and LSTM are

superior models in both approaches compared with

other models, and a significant improvement in the

performance of models is observed when they use binary

data as input values. In (Hiransha et al., 2018), four types

of ANN architectures have been utilized, namely

Multilayer Perceptron(MLP), Recurrent Neural

Network(RNN), Long Short-Term Memory (LSTM),

and Convolutional Neural Network (CNN), for

predicting the stock prices of two different stock markets,

the National Stock Exchange (NSE) of India and the New

York Stock Exchange (NYSE). The authors compared

the obtained results with the Autoregressive Integrated

Moving Average (ARIMA) model. The results show that

the neural network models outperform the ARIMA

model. Another study is discussed in (Botunac et al.,

2019). The performance of three different neural network

models was compared on financial data using the Feed

Forward Neural Network (FFNN), Recurrent Neural

Network (RNN), and Long Short-Term Memory

(LSTM). In their study, the data were preprocessed with

a simple moving average and filtered with a discrete

wavelet transformation to achieve better results. Among

the tested neural network models, better results were

obtained using LSTM than other neural network models.

A comparison between Autoregressive Integrated

Moving Average (ARIMA), Back Propagation Neural

Network (BPNN), and Genetic Algorithm (GA) was

conducted by (Alfred et al., 2015) to predict the short-

term time series network traffic activity datasets, which

were obtained from the ICT Universitas Mulawarman.

The performances of these models are compared based

on mean squared error. Based on the results obtained,

BPNN is found to be very efficient in capturing the

structural relationships in time series data. Another study

reported by (Nikou et al., 2019), the study compared the

performance of Multilayer Perceptron (MLP), Long

Short-Term Memory (LSTM), Random Forest(RF), and

Support Vector Regression (SVR) with daily closing

values of iShares MSCI United Kingdom exchange rates.

They report that the LSTM model is a better

predictive model in the prediction of the close price of

iShares MSCI United Kingdom.

3 Background

In this section, we review the basic concepts of the

underlying technologies used in this study.

3.1 Back Propagation Neural Network

The Back Propagation Neural Network (BPNN) is

a machine learning algorithm, that aims to minimize the

mean square error gradually between the actual and

target outputs of the network .The common structure of

BPNN model is illustrated in Fig. 1.

As viewed in architecture, there are three layers: an input

layer, a hidden layer, and an output layer. The input layer

is connected to the hidden layer by interconnection

weights, and the hidden layer is connected to the output

layer by interconnection weights. Each layer has a

number of nodes and each node represents a neuron.

Figure (1). Back Propagation Neural Network Architecture

BPNN requires a suitable choice of network architecture,

which is the number of neurons required to form the

network. It is important to identify the total number of

neurons in the hidden layer. Selection of the neurons is

done by the trial and error method. A small number of

neurons may result in incorrect estimation whereas more

neurons result in overestimation. In addition, the

formation of the network requires a proper choice of

network layers. Increasing the number of layers increases

the computational complexity of the neural network,

which can increase the time taken for convergence. Each

hidden neuron in BPNN performs a weight summation

operation. The outputs of all hidden layer nodes are

calculated as follows:

ℎ𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

) (1)

where i is the input node (i=1,2,…,n), j is the hidden layer

node (j=0,1,2,…,m), 𝑤𝑖𝑗 is connection weight from input

node i to hidden node j, ℎ𝑗 is the output of the jth node

in the hidden layer, and 𝑓 is the activation function of

nodes. In our an model, we use the sigmoid function as

activation function, which is defined as

𝑓(𝑥)=
1

1+𝑒𝑥𝑝(−𝑥)
 (2)

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

21
Open Access Article is distributed under a CC BY 4.0 Licence.

A suitable selection of the activation function is a critical

step that introduces nonlinearity into the network for the

hidden layer, because it provides the ability of the

network to capture the nonlinear relationship between

input and output. Several BPNN training algorithms have

been proposed for adjusting the connection weights, such

as Gauss-Newton’s algorithm (Nandy et al., 2012) and

the Levenberg–Marquardt algorithm (Mustafidah et al.,

2019). All algorithms use the gradient of the performance

function to determine the adjustment of the weights to

minimize the performance. That is the Widrow-Hoff

learning rule, in which the network weights are moved

along the negative of the gradient of the performance

function, which is the steepest descent direction. The

training process of the network occurs in the following

steps. In the first step, the training samples were entered

into the input layers. Then, the presented data

propagates through the hidden layers to the output layers.

In the second step, the errors are calculated by taking the

difference between the actual and desired outputs. The

network weights will be continuously adjusted by

propagated back network error until the desired output

error is obtained, which represents the minimum output

error. This means that the smaller the output error, the

better fit the model. Python software provides effective

machine learning libraries for building and optimizing

neural network models which, has been considered in this

study. The formula for the BP algorithm is described by

the following equations:

𝑊(𝑛) = 𝑊(𝑛 − 1) − 𝛥𝑊(𝑛), (3)

where,

∆𝑊(𝑛) = 𝛾
𝜕𝐸

𝜕𝑊
(𝑛 − 1) + 𝜃∆𝑊(𝑛 − 1), (4)

where γ is the learning rate, E is the gradient of error

function, and 𝜃𝛥𝑊(𝑛 − 1) the quantity of incremental

weight.

Back propagation networks have the ability to learn
complicated multidimensional mappings. It can be used

to simulate nonlinear mapping models, solve some real-

world problems, such as classification, and prediction; it

is a well-known, powerful tool in problem solving for

various stock price predictions.

 Radial Basis Function Neural Network 3.2

A Radial Basis Function Neural Network (RBFNN) is a

type of feed forward neural network with the use of radial

basis functions as activation functions. The basic

structure of RBFNN is shown in Fig. 2.

Figure (2). The basic structure of an RBF neural network

Typically, the network has three layers: an input layer, a

hidden layer with activation nodes based on the Radial

Basis Function (RBF), and a final output layer. Similar to

the typical ANN structure, each layer consists of a set of

nodes. The input layer receives the input vector and

transforms its value to the hidden layer. Each node in the

hidden layer has its own RBF centered at a point and

is connected to the input layer. The output layer produces

the outcome of the prediction model. The output of the

RBFNN is defined as a weighted average of the incoming

signals from the hidden layer. In practice, the structure of

RBFNN may require more neurons in a hidden layer than

Feed Forward Neural Network (FFNN). The number of

hidden neurons in the hidden layer is critical for

determining the RBF model capability.

The nonlinearity of the RBFNN model is presented by

mapping the input data to hidden layers using the basis

function, whereas a linear mapping appears from the

hidden layers to the output layer. The activation function

of the RBFNN can take different types of radial basis

functions. A Gaussian activation function has been

commonly used as an activation function in the hidden

neurons of the RBF model. However, it is difficult for

the Gaussian activation function to approximate constant

values, and the models may suffer from an approximation

of these values. A sigmoid function as the basis function

of the network may replace the Gaussian functions, so

more accurate results can be found by an RBF

network(Wu and Wilamowski, 2013) . In our model, a

sigmoid function was used to deal with this problem.

When the sigmoid function is used, the common form of

the kth node of the output layer that has the weight Wk

and the neuron i of the hidden layer is as follows:

𝑦𝑘 = ∑ 𝑤𝑘𝑖𝑒𝑥𝑝(
1

1 + 𝑒𝑥𝑝(−𝑥)
)

𝑛

𝑖=1

, 𝑘 = 1,2,3, . . , 𝑞 (5)

RBFNN generally trains faster than BPNN due to the use

of the radial basis functions and can effectively fit any

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

22
Open Access Article is distributed under a CC BY 4.0 Licence.

nonlinear function, and it is not easy to fall into the local

optimal solution; RBFNN can improve the accuracy and

decrease the training time complicity.

RBF networks have many uses, such as time series

prediction (Sohrabi et al., 2023), system control (Mehrsai

et al., 2013), and classification(Jiang and Li, 2019).

Many applications have shown that RBFNN can be a

useful method for the stock market prediction. This is due

to its ability to perform universal approximation and

regularization, it can approximate any continuous

function with high precision (Liao et al., 2003).

3.3 Long Short-Term Memory

Long Short-Term Memory (LSTM) neural network is an

improved type of RNN with better performance in long-

term dependency in many applications (Qu and Zhao,

2019). RNN is a form of neural network that has the

ability to process sequential inputs recurrently due to the

internal time loops at each hidden layer unit in which the

output of the unit at a specific time step is taken as the

input for the next time step. However, the RNN has

a limit in real practice, in that it is just able to record

the information in a few past steps. It appears to

have vanishing gradient problems when dealing with

long time series data. The LSTM units have been

proposed to address the vanishing gradient problem

where the hidden layer is replaced by recurrent gates

called forget gates. These gates allow modelling of long-

term dependences in sequence data and prevent the

vanishing gradient problem (Gers et al., 2000, Graves

and Graves, 2012, Nugaliyadde et al., 2019). LSTM

networks are adapted for identifying long-term

dependencies and using them for future prediction, which

was impossible in a standard RNN architecture where the

network could just learn a limited number of short-term

time series. The key element of the LSTM is the

appending of cell state or a memory cell, which is

comprised of three basic gates: an input gate, a forget

gate, and an output gate. The forget gate decides which

information from the previous cell is completely to be

kept or ignored. The input gate chooses which new values

need to be updated in the cell state, and the output gate

lets the cell state have an impact or not on the latest

present time step. LSLM also has a number of hidden

units.

The sigmoid neural net layer and weights are used to

assign importance to information. The stochastic gradient

descent based algorithm is used to enforce constant error

propagation (neither exploding nor vanishing) through its

internal units. Fig.3 shows the architecture of the LSTM.

Basic architecture of a LSTM Figure (3).

The nature of the three basic gates of the LSTM can be

described in the following steps: In the first step, the

forget gate has to decide which information to discard

from cell state. The formula of the forget gate is

characterized by the following equations:

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑓) (6)

𝑅𝑡 =
1

1+𝑒−𝑡 (7)

where ℎ𝑡−1, 𝑥𝑡 , 𝑅𝑡and 𝑓𝑡 represent the output at the

previous time (t-1), input at the present timestamp (t), a

Sigmoid function and a forget gate, respectively, 𝑊𝑓 and

𝑏𝑓are the weight matrices and bias vectors, respectively,

that need to be learned during the training process.

In the second step, the input gate layer decides which new

information should be saved in the cell state. The input

gate has the following mathematical representation:

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑖 (8)

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑐) (9)

Updating the information stored in the cell state has

been done by the following equation:

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶̃𝑡 , (10)

where 𝐶𝑡 , 𝐶𝑡−1 and 𝐶̃𝑡 represents the current cell state

value , the last timestep cell state value, and an update

for the current cell state value at timestamp t respectively.

In the third step, the output gate layer determines the

output information. The characteristics of the output gate

layer are expressed in the following equations:

𝑂𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑜) , (11)

ℎ𝑡 = 𝑂𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡) , (12)

where 𝑂𝑡 is the output gate that indicates the candidate

for cell state at timestamp t and ℎ𝑡 is the LSTM block's

output information at time t.

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

23
Open Access Article is distributed under a CC BY 4.0 Licence.

Building an LSLM model includes the following steps:

Step1: The collected data is preprocessed to eliminate

any undesirable or incomplete data.

Step2: Divide the data into training and testing data. The

training data is used to build the model and the test data

to evaluate the model's performance.

Step3: Selection of a suitable architecture for the LSLM

Model. This step requires an appropriate choice of the

number of the nodes and layers.

Step4: Train the model by repeating the training cycle

until the desired result is obtained.

Step5: Making predictions and assessing the model's

performance.

4 Materials and Methods

4.1 Dataset

The historical data of the daily stock close prices for two

different well-known NASDAQ-100 companies has been

chosen to represent our dataset, namely Microsoft

Corporation (MSFT) and Apple Inc. (AAPLE). Our

dataset is taken from the Yahoo Finance website and

includes four years of data, which is from January 26,

2017 to December 26, 2020. Fig.4 shows two different

closing stock prices.

Figure (4). Closing stock prices for MSFT and AAPLE

Before using the dataset for the training process, it is

important to take a preprocessing step. The preprocessing

step used in this study is data normalization using the

equation formula:

𝑍′𝑖 =
𝑍𝑖−𝑚𝑖𝑛(𝑍𝑖)

𝑚𝑎𝑥(𝑍𝑖)−𝑚𝑖𝑛(𝑍𝑖)
 , (13)

where 𝒁′𝒊 is normalized values, 𝑚𝑖𝑛(𝑍𝑖) is the

minimum value of input 𝒁𝒊, and 𝒎𝒂𝒙(𝒁𝒊)is the

maximum value of input 𝒁𝒊.

The normalization process aims to make data statistically

comparable. This can also help the learning process be

more stable. Data normalization helps to smooth the

convergence, which prevents dramatic changes in the

gradient. After processing, we anti-normalize the output

with the following equation:

𝑦𝑡̂ = 𝑦𝑡
′(𝑦𝑚𝑎𝑥+ 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛 , (14)

where 𝑦𝑡
′ represents the predicted data after anti-

normalization and 𝑦𝑚𝑎𝑥 and 𝑦𝑚𝑖𝑛 the minimum and

maximum data, respectively, of output 𝑦𝑡
′.

Our dataset was divided into 90:10 ratios for training and

testing purposes, respectively. For all models, the

training dataset is used to train the neural network models

and update model parameters. The test dataset was used

to optimize the models for data prediction, in other

words, the test dataset was used for simulating the trained

network and checking the accuracy of the trained

network. The accuracy of the model on the test dataset

gives you a very rough estimate of how accurate the

model will be when presented with new, previously

unseen data.

4.2 Model Design

Our aim looks at the comparison of the three NNs models

BPNN, RBFNN, and LSTM in a problem of stock market

prediction. The basic principles of them have been

detailed in the previous section. The process of training

algorithms is described later in the paper. After training

the proposed models and evaluating their accuracy, we

compared the output data given by the network with the

testing dataset. The results of these comparisons are

given in detail in the later part of this paper. Fig.5 shows

the block diagram of the methodology.

Figure)5). Methodology block diagram

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

24
Open Access Article is distributed under a CC BY 4.0 Licence.

4.3 Performance Evaluation Criteria

We select the following statistical metrics to evaluate the

predictive performance of proposed models: Mean

Absolute Error (MAE), Root Mean Square Error

(RMSE), Mean Absolute Percentage Error (MAPE), and

coefficient of determination (R2). MAE is the measure of

the deviation between the actual and predicted values.

MAPE is commonly presented the accuracy of the model

as a percentage in which equation (16) is multiplied by

100. The statistical matrix RMSE measures the mean

square error of the actual and predicted values; its value

is always positive and zero in the ideal case. The lower

the MAPE, MAE and RMSE values, the closer the

predicted time series values are to actual values,

indicating that the model is accurate. R2 also gives the

accuracy of the model as percentage. The smaller values

present the better predictor model; it gives you

knowledge of how well the model predicts the new

dataset. Its values are between zero and one, and the

largest value is the better value. The equations for these

criteria are as follows:

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦𝑡

′)2

𝑛

𝑖=1

, (15)

𝑀𝐴𝑃𝐸 =
1

𝑛
∑

|𝑦𝑡 − 𝑦𝑡
′|

𝑦𝑡

𝑛

𝑖=1

× 100 , (16)

𝑀𝐴𝐸 =
1

𝑛
∑

|𝑦𝑡 − 𝑦𝑡
′|

𝑦𝑡

𝑛

𝑖=1

 (17)

R2 = 1 −
∑ (yt − yt

′)2n

i=1

∑ (yt
′)2n

i=1

, (18)

Where

𝑦𝑡 is the actual value at the time t

𝑦𝑡
′ is the forecast value at the time t

n is the total number of tested datasets

4.4 Experimental implementation

All experiments were conducted in Python with

PyCharm Professional Edition 2020.2.1 on an Intel Core

i5-5200U CPU machine. The implementation includes

construction, training, testing, and evaluation of neural

network models. All neural network models were

developed using the open source deep learning tool

Tensorflow (Abadi et al., 2016) with Keras (Ketkar,

2017) version 2.0.8 as the front-end interface. The Adam

optimizer was applied to all of the neural network models

for weight modification and Mean Square Error (MSE)

was used as the cost function. The formula for MSE is

given as follows:

MSE =
1

n
∑(yt − yt

′)2

n

i=1

, (19)

where 𝐲𝐭 and 𝐲𝐭
′ are actual and predicted values at time t,

respectively, and n is the data size of the trained set.

To ensure keeping the same conditions when training

different models, a single hidden layer was used in all

prediction neural network models and one fully

connected layer has been used as the output layer, which

gives the predicted next day value. Furthermore, the

batch size is considered as 32, and epochs are kept

constant at 200 for all prediction models. To evaluate the

performance of the models, we used the prediction

accuracy indicators. The accuracy indicators tell us how

accurate the forecast model is at predicting future trend

movements. To indicate the performance of the ANN

models, the optimal number of hidden layer neurons

should be decided in ANNs. We start our implementation

with the first method of PBNN. A number of hidden layer

neurons have been tried, which are illustrated in Table 1

for two datasets. A sigmoid transfer function was used in

the hidden layers, and a rectified linear unit activation

function was used in the output layer. The optimal

number of hidden layers of neurons is based on the

smallest MSE value generated, which is shown in bold in

Table 1. It is noticed that as the number of hidden

neurons increases, the mean square error increases

gradually. The second method is RBFNN; we start the

experiment by determining the optimal number of hidden

neurons in the network architecture. A number of hidden

layer neurons were modified, and Table 2 shows the

results of this experiment for two data series. The value

of the optimum hidden neuron that was chosen in this

study is given in bold in the table with the smallest test

mean square error value. Furthermore, the output layer of

transform functions was chosen to be the sigmoid transfer

function in the RBF model.

Table (1). The result of the determination of the number of

neurons in the hidden layer of PBNN

No. of neurons MSE

AAPLE MSFT

100 0.000105 0.000108

200 0.000340 0.000120

300 0.001482 0.000407

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

25
Open Access Article is distributed under a CC BY 4.0 Licence.

Table (2). The result of selecting the optimal number of

neurons for the RBFNN's hidden layer

The third model is the LSTM model. Similar to previous

methods, the optimal number of neurons should be

specified. In this model, a sigmoid activation function

was used in the LSTM cells. The optimum number of

neurons has been obtained after trying different values

and the results of the experiment are presented in Table

3. The optimal number is given in bold in the table.

Furthermore, we used the dropout method on all layers of

the network to prevent overfitting during network

training and improve generalizability. The dropout units

technique in a neural network depends on the value of the

probability p of retaining a hidden unit in a neural

network. To obtain the optimal value of p, which is a

hyperparameter in the dropout, we tried different values

of p ranging from 0.2 to 0.6 after considering the optimal

number of the neurons as 300 in the LSTM model and

100 neurons in BPNN and RBFNN models, then we

chose the best value of p that gives the best accuracy with

a small amount of error. The results are given in Table 4,

which indicates that the best accuracy is obtained with p

= 0.2 in the BPNN and LSTM models, whereas the

dropout with the probability of 0.4 in the RBFNN model

has fewer errors, thus has been considered the optimum

value of p in RBFNN.

Table (3). The result of selecting the LSTM's optimal number

of neuron.

5 Results and Discussion

Table 5 shows the summarized experimental results of

three neural network models on the two different

datasets; the best performing model is displayed in

boldface. By comparing the statistical errors for all

models, the LSTM model achieves the lowest RMSE and

MAPE, and the highest R2 on the prediction of both

datasets. However, in terms of MAE, RBFNN reported

the smallest errors value of 0.009586 on the prediction on

AAPLE dataset, while on the prediction of MSFT

dataset, LSTM has a better performance. LSTM model

performed well because it does not depend on any

previous information for prediction, which enables the

model to understand the dynamic changes and patterns

occurring in the current window. This can be beneficial

for non-stationary time series such as stock market.

RBFNN model also performed well and has very close

results to LSTM model. However, in the case of BPNN,

the model has the worst performance across two stacks.

This is due to its simple architecture, which could limit

its capability to make predictions for non-stationary time

series. We could also find from Table 5 that the AAPLE

models show better results than the MSFT models. The

AAPLE models have the smallest values of RMSE,

MAPE, and MAE and the determination R2 has a much

closer fitted result on the AAPLE dataset. Fig. 6, Fig. 7

and Fig.8 display the actual test data versus predicted test

data graphs of three models on two different stock prices

for one-day ahead prediction. The red lines indicate the

predicted test data, and the black lines indicate the real

test data for MSFT stocks. The orange lines indicate the

predicted test data and the black lines indicate the real

test data in the AAPLE stock prices.

It can be seen that, generally, all of these models perform

relatively well, demonstrating that the past prices of

stocks have predictive power and can be used to predict

No. of neurons MSE

AAPLE MSFT

100 0.000184 0.000200

200 0.000208 0.000209

300 0.000220 0.000261

No. of

hidden

layer

Number of

neurons

MSE

AAPLE MSFT

1 100 0.000183 0. 001925

1 200 0.000153 0.001326

1 300 0.000140 0.001100

Dropout

 rate p

MSE

PBNN RBFNN LSTM

0.2

AAPLE MSFT AAPLE MSFT AAPLE MSFT

0.000401 0. 000350 0.000223 0.000211 0.000135 0.000841

0.3 0.000941 0.000474 0.000151 0.000179 0.000322 0.001344

0.4 0.001048 0.002277 0.000130 0.000162 0.000281 0.001915

0.5 0.003536 0.002015 0.000148 0.000183 0.000422 0.002907

0.6 0.005195 0.005153 0.000161 0.000150 0.000683 0.003288

Table (4). The result of estimating the optimal dropout rate p

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

26
Open Access Article is distributed under a CC BY 4.0 Licence.

future prices. The predicted output fairly overlaps the

target output, indicating a good prediction. Additionally,

the turning points are forecasted quite timely. When there

is a trend in the actual price, the predicted value follows

accordingly and closely. It is also clear that the models

that were proposed using the AAPLE dataset have better

fitted results than the MSFT dataset.

Table (5). Results of the three methods

Dataset AAPLE MSFT

Metrics RMSE MAE MAPE R2 RMSE MAE MAPE R2

Models

BPNN 0.024895 0.020301 4.493746 0.988906 0.036203 0.03343 4.791764 0.982899

RBF 0.012556 0.009586 2.076750 0.997178 0.030193 0.015742

1.506608 0.988105

LSTM 0.011353 0.010190 1.213605 0.997692 0.013394 0. 010510 1.895189

0.997659

Figure (6). BPNN model predicted results.

Figure (7). RBFNN model Predicted results.

Figure (8). LSTM model predicted result.

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

27
Open Access Article is distributed under a CC BY 4.0 Licence.

6 Conclusions and Future Work

This study compares the performance of three neural

network learning models, i.e., BPNN, RBFNN, and

LSTM, by predicting movements in the one-day ahead of

stock prices. The study address the following question:

which neural network models provide the best predictive

performance for both datasets? By implementing the

proposed methods and checking the accuracy of the

models using statistical errors, we conducted a

comparative study between three NN models for

predicting the stock market. With evidence from the

forecast accuracy of two stocks' close prices. We find that

all techniques perform well with acceptable accuracy, but

the LSTM model beats other models in the prediction of

the close prices on two datasets, and its performance was

followed by that of RBFNN model. Which indicates that

it may be conceivable to utilize the LSTM model as an

effective approach to successfully predict the future

pattern of stock prices based on the results of this study,

the following recommendations can be made:

• Deep neural network models is better than the

other techniques that have been utilized in this

study. Researchers and investors are

recommended to employ these methods for

predicting the stock price.

• We recommend using hybrid models such as

optimized LSTM with optimization techniques

such as Particle Swarm Optimization (PSO) and

combining BPNN and RBNN with other AI

methods such as Fuzzy Logic (FL), Support

Vector Machine (SVM), and Genetic Algorithm

(GA), a lot of research work has been found that

hybrid models improve stock prediction

accuracy.

• The feature selection step should be taken under

consideration in future work and compared with

the results obtained in this study. It is suggested

that the researchers use feature selection

algorithms to extract the features of stock prices,

such as Deep Belief Networks (DBN), the

Discrete Wavelet Transformation (DWT)

technique, Relief, maximum Relevance and

Minimum Redundancy (mRMR), and LASSO.

Such techniques successfully remove certain

types of noise from data and improve the quality

of the neural network model.

Conflict of Interest: The authors declare that there are
no conflicts of interest.

References

ABADI, M., BARHAM, P., CHEN, J., CHEN, Z., DAVIS, A.,

DEAN, J., DEVIN, M., GHEMAWAT, S., IRVING,

G. & ISARD, M. {TensorFlow}: a system for

{Large-Scale} machine learning. 12th USENIX

symposium on operating systems design and

implementation (OSDI 16), 2016. 265-283.

ALFRED, R., OBIT, J. H., AHMAD HIJAZI, M. H. & AG

IBRAHIM, A. A. 2015. A performance comparison

of statistical and machine learning techniques in

learning time series data. Advanced Science Letters,

21, 3037-3041.

BINKOWSKI, M., MARTI, G. & DONNAT, P.

Autoregressive convolutional neural networks for

asynchronous time series. International Conference

on Machine Learning, 2018. PMLR, 580-589.

BOTUNAC, I., PANJKOTA, A. & MATETIC, M. The

importance of time series data filtering for predicting

the direction of stock market movement using neural

networks. Proceedings of the 30th DAAAM

International Symposium, 2019. 0886-0891.

CHEN, L., QIAO, Z., WANG, M., WANG, C., DU, R. &

STANLEY, H. E. 2018. Which artificial intelligence

algorithm better predicts the Chinese stock market?

IEEE Access, 6, 48625-48633.

CHEN, Z., LI, C. & SUN, W. 2020. Bitcoin price prediction

using machine learning: An approach to sample

dimension engineering. Journal of Computational

and Applied Mathematics, 365, 112395.

GAO, P., ZHANG, R. & YANG, X. 2020. The application of

stock index price prediction with neural network.

Mathematical and Computational Applications, 25,

53.

GERS, F. A., SCHMIDHUBER, J. & CUMMINS, F. 2000.

Learning to forget: Continual prediction with LSTM.

Neural computation, 12, 2451-2471.

GRAVES, A. & GRAVES, A. 2012. Long short-term memory.

Supervised sequence labelling with recurrent neural

networks, 37-45.

HAŠKOVÁ, S., ŠULEŘ, P. & KUCHÁR, R. 2023. A Fuzzy

Multi-Criteria Evaluation System for Share Price

Prediction: A Tesla Case Study. Mathematics, 11,

3033.

HIRANSHA, M., GOPALAKRISHNAN, E. A., MENON, V.

K. & SOMAN, K. 2018. NSE stock market prediction

using deep-learning models. Procedia computer

science, 132, 1351-1362.

JAFARI, A., KHALILI, T., BABAEI, E. & BIDRAM, A. 2019.

A hybrid optimization technique using exchange

market and genetic algorithms. Ieee Access, 8, 2417-

2427.

JIANG, C. & LI, Y. 2019. Health big data classification using

improved radial basis function neural network and

nearest neighbor propagation algorithm. IEEE

Access, 7, 176782-176789.

KETKAR, N. 2017. Introduction to keras. Deep learning with

Python. Springer.

KURANI, A., DOSHI, P., VAKHARIA, A. & SHAH, M. 2023.

A comprehensive comparative study of artificial

neural network (ANN) and support vector machines

(SVM) on stock forecasting. Annals of Data Science,

10, 183-208.

SJFSSU Vol. 3, No. 2 (2023) 18-28 Mohamed

28
Open Access Article is distributed under a CC BY 4.0 Licence.

LIAO, Y., FANG, S.-C. & NUTTLE, H. L. 2003. Relaxed

conditions for radial-basis function networks to be

universal approximators. Neural Networks, 16, 1019-

1028.

MANSOR, M. A., MOHD JAMALUDIN, S. Z., MOHD

KASIHMUDDIN, M. S., ALZAEEMI, S. A., MD

BASIR, M. F. & SATHASIVAM, S. 2020.

Systematic boolean satisfiability programming in

radial basis function neural network. Processes, 8,

214.

MANSOURI, A., NAZARI, A. & RAMAZANI, M. 2016. A

comparison of artificial neural network model and

logistics regression in prediction of companies’

bankruptcy (A case study of Tehran stock exchange).

International Journal of Advanced Computer

Research, 6.

MEHRSAI, A., KARIMI, H.-R., THOBEN, K.-D. &

SCHOLZ-REITER, B. 2013. Application of learning

pallets for real-time scheduling by the use of radial

basis function network. Neurocomputing, 101, 82-93.

MOGHAR, A. & HAMICHE, M. 2020. Stock market

prediction using LSTM recurrent neural network.

Procedia Computer Science, 170, 1168-1173.

MOKHTARI, S., YEN, K. K. & LIU, J. 2021. Effectiveness of

artificial intelligence in stock market prediction based

on machine learning. arXiv preprint

arXiv:2107.01031.

MORADI, M., JABBARI NOOGHABI, M. & ROUNAGHI,

M. M. 2021. Investigation of fractal market

hypothesis and forecasting time series stock returns

for Tehran Stock Exchange and London Stock

Exchange. International Journal of Finance &

Economics, 26, 662-678.

MUSTAFIDAH, H., PUTRI, C., HARJONO, H. &

SUWARSITO, S. The most optimal performance of

the Levenberg-Marquardt algorithm based on

neurons in the hidden layer. Journal of Physics:

Conference Series, 2019. IOP Publishing, 066099.

NABIPOUR, M., NAYYERI, P., JABANI, H., SHAHAB, S. &

MOSAVI, A. 2020. Predicting stock market trends

using machine learning and deep learning algorithms

via continuous and binary data; a comparative

analysis. IEEE Access, 8, 150199-150212.

NANDY, S., SARKAR, P. P. & DAS, A. 2012. An improved

Gauss-Newtons method based back-propagation

algorithm for fast convergence. arXiv preprint

arXiv:1206.4329.

NIKOU, M., MANSOURFAR, G. & BAGHERZADEH, J.

2019. Stock price prediction using DEEP learning

algorithm and its comparison with machine learning

algorithms. Intelligent Systems in Accounting,

Finance and Management, 26, 164-174.

NUGALIYADDE, A., SOHEL, F., WONG, K. W. & XIE, H.

Language modeling through Long-Term memory

network. 2019 international joint conference on

neural networks (IJCNN), 2019. IEEE, 1-6.

QU, Y. & ZHAO, X. Application of LSTM neural network in

forecasting foreign exchange price. Journal of

Physics: Conference Series, 2019. IOP Publishing,

042036.

RAMESH, V., BASKARAN, P., KRISHNAMOORTHY, A.,

DAMODARAN, D. & SADASIVAM, P. 2019. Back

propagation neural network based big data analytics

for a stock market challenge. Communications in

Statistics-Theory and Methods, 48, 3622-3642.

RUBI, M. A., CHOWDHURY, S., RAHMAN, A. A. A.,

MEERO, A., ZAYED, N. M. & ISLAM, K. A. 2022.

Fitting multi-layer feed forward neural network and

autoregressive integrated moving average for Dhaka

Stock Exchange price predicting. Emerging Science

Journal, 6, 1046-1061.

SHAH, D., ISAH, H. & ZULKERNINE, F. 2019. Stock market

analysis: A review and taxonomy of prediction

techniques. International Journal of Financial

Studies, 7, 26.

SIAMI-NAMINI, S., TAVAKOLI, N. & NAMIN, A. S. A

comparison of ARIMA and LSTM in forecasting

time series. 2018 17th IEEE international conference

on machine learning and applications (ICMLA),

2018. IEEE, 1394-1401.

SOHRABI, P., JODEIRI SHOKRI, B. & DEHGHANI, H.

2023. Predicting coal price using time series methods

and combination of radial basis function (RBF) neural

network with time series. Mineral Economics, 36,

207-216.

SONG, Y.-G., ZHOU, Y.-L. & HAN, R.-J. 2018. Neural

networks for stock price prediction. arXiv preprint

arXiv:1805.11317.

TIWARI, R., SRIVASTAVA, S. & GERA, R. 2020.

Investigation of artificial intelligence techniques in

finance and marketing. Procedia Computer Science,

173, 149-157.

VIJH, M., CHANDOLA, D., TIKKIWAL, V. A. & KUMAR,

A. 2020. Stock closing price prediction using

machine learning techniques. Procedia computer

science, 167, 599-606.

WU, X. & WILAMOWSKI, B. M. Advantage analysis of

sigmoid based RBF networks. 2013 IEEE 17th

International Conference on Intelligent Engineering

Systems (INES), 2013. IEEE, 243-248.

