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Stock market prediction has become an important research area. During the last 

few years, various Artificial Neural Networks (ANNs) models have been proposed 

for stock market prediction problems.  This study aims to compare the prediction 

performance of three artificial neural network techniques, i.e., Back Propagation 

Neural Network (BPNN), Radial Basis Function Neural Network (RBFNN), and 

Long Short-Term Memory (LSTM) in predicting the close prices of the next day. 

The data used in this study includes the daily close prices of two companies, 

Microsoft (MSFT) and Apple Inc. (AAPL), belonging to the NASDAK-100 stock 

exchange.  The models were employed using Python software, a single hidden 

layer prediction model was constructed, and the effect of prediction accuracy on 

the number of neurons was identified. The performance of   the models is measured 

in terms of their Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), and R-squared (R2) score values. The 

experimental results indicated that the LSTM forecasting model outperformed 

alternative models with a high degree of accuracy and was found to be very 

efficient in learning time series data. 
 

Keywords: Stock prices, Prediction models, 
artificial neural network, Time series data.  

 

1   Introduction  

Stock market prediction is an attractive topic for 

investors and researchers and has become an essential 

component in the financial field. Stock market prediction 

aims at building models based on past prices to simulate 

the future price, which is important for financial 

organizations It plays an increasingly important role in 

that it has a great impact on leading a proper decision on 

financial institutions, thus making a better profit.  

However, predicting the stock price itself is a challenging 

task due to its complex characteristics; stock markets are 

dynamic, nonlinear, complicated, nonparametric, 

chaotic, and exhibit wide variation (Binkowski et al., 

2018, Shah et al., 2019). Accordingly, various solution 

techniques have been proposed for obtaining accurate 

prediction results over the years. Early techniques 

involved statistical methods such as Autoregressive 

Moving Average (ARMA) model (Rubi et al., 2022, 

Moradi et al., 2021) and Logistic Regression (LR) (Chen 

et al., 2020) (Mansouri et al., 2016). Such 

techniques treat the stock price movement as a function 

of a time series and are solved as a regression problem. 

However, the stock market has high volatility in nature.  

These statistical methods may suffer from difficulty in 

revealing the internal laws of the stock market. With 

recent developments in Computer Science, more 

developing techniques have been proposed to analyze 

nonlinear relationships in financial time series using 

Artificial Intelligence (AI) techniques. 
 

Most previous studies in this area showed that AI 

techniques such as Artificial Neural Networks (ANN) 

(Gao et al., 2020), Fuzzy Logic (FL)(Hašková et al., 

2023), Genetic Algorithm (GA) (Jafari et al., 2019), 

Support Vector Machine (SVM)(Kurani et al., 2023)  

are found to be more efficient than statistical methods. AI 

techniques have the capability of detecting the structures 

and nonlinear patterns of data (Mokhtari et al., 2021, 
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Chen et al., 2018).  In the most existing prediction 

methods, Neural Networks (NNs) models have 

been used in numerous studies for stock price prediction, 

and have revealed the superiority in solving nonlinear 

problems(Vijh et al., 2020, Nikou et al., 2019) (Siami-

Namini et al., 2018, Moghar and Hamiche, 2020, Vijh et 

al., 2020). This advantage comes from the capability 

of NNs to model nonlinear techniques without previous 

information about the processing techniques, which can 

be very powerful for predicting the stock market. ANN 

has   the benefit of storing experiential knowledge and 

making it accessible for use. Additionally, it has the 

advantages of automatic learning of features, high 

generalization and identification of unseen data. Thus, 

ANN has attracted the attention of many researchers.  

The first contribution of this study is the development of 

three artificial neural networks   models, namely, Back 

Propagation Neural Network (BPNN), Radial Basis 

Function Neural Network (RBFNN), and Long Short-

Term Memory (LSTM) for stock market prediction 

problems. The second contribution   of   this work is the 

comparison of forecasting performance of the proposed 

models, our aim is to verify which method is effective in 

predicting next day closing prices. This study focused on 

the daily stock close prices of two companies i.e., 

Microsoft (MSFT) and Apple Inc., which are from 

January 26, 2017, to December 26, 2020.  The data of our 

experiment was collected from the Yahoo Finance 

website. Our dataset is divided into training sets which is 

used to train the model and update the model parameters, 

and test sets which would be used for testing so that we 

can use the data to optimize the model for data prediction.   

Similar input datasets were used to enable comparison 

between the proposed models. The performances were 

evaluated based on four metrics: Root Mean Squared 

Error (RMSE), Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE), and R squared (R2) 

score values. The rest of this paper is structured as 

follows. A literature review of the related studies is 

presented in Section 2. The descriptions of the artificial 

neural network techniques are given in Section 3.  

Martials and methods of our research are described in 

Section 4, we introduce our dataset and describe the 

evaluation indicators of our experiment, and we explain 

our experimental procedures. The experiential results and 

discussion are detailed in Section 5, a comparison of the 

effectiveness of the proposed methods based on obtained 

results explained in this section. Finally, the paper is 

concluded in Section 6. 
 

2   Related Work 

 

The effectiveness of neural networks for stock market 

prediction problems has been examined for many years. 

Prediction of stock price movements was explored in 

(Ramesh et al., 2019),  the authors  presented   a detailed 

analysis to show the efficiency of  Back Propagation 

Neural Network (BPNN) model in predicting stock 

returns. They explained the importance of the choice of 

activation function, learning rate, and the number of 

neurons in the hidden layer to increase the performance 

of the BPNN. The results of their work were compared 

with a Multiple Linear Regression (MLR) model, and 

they found that the BPNN based model gave better 

results in predicting stock returns with good accuracy. 

The authors in  (Song et al., 2018) evaluated the 

performance of neural network models in stock market 

index perdition using adjusted close prices of 

three different stocks, namely Bank of China, Vanke A, 

and Kweichou Moutai. They reported a comparison 

between BPNN, Radial Basis Function Neural Network 

(RBFNN), General Regression Neural Network 

(GRNN), Support Vector Regression (SVR), and Least 

Squares Support Vector Regression (LS-SVR). The 

performance of the proposed models is evaluated using 

statistical indicators such as Adopting Mean Square Error 

(AMSE) and Mean Absolute Percentage Error (MAPE). 

They observed that the BPNN model outperforms the 

other four models. The performance of ANN was also 

investigated  in  (Mansor et al., 2020).  Their work   aims 

to compare the predictive performance of five neural 

network architectures, namely: Multiple Linear 

Regression (MLR), Elman Neural Network (ENN) 

Elman, Jordan Neural Network (JNN), Radial Basis 

Function (RBF), and Multilayer Perceptron (MLP), in 

predicting six traded stocks of the Brazilian stock 

exchange.  They use the test data to tune the number of 

input variables and suitable hidden layers. The models 

were trained to predict the closing price of the next day 

from the previous values. The performance of all fitted 

models was assessed by the Root Mean Square Error 

(RMSE). In their  results, they found  that the ENN, JNN,  

MLP, and  MLR networks presented quite similar RMSE 

for all times series analyzed in their research and the 

MLR may be tuned to provide results quite similar to 

more complicated models such as the MLP, ENN, and 

JNN neural networks, since it  provides the best result 

.The performance of the neural network was also 

investigated in (Moghar and Hamiche, 2020) using 

LSTM for forecasting two stocks on the New York Stock 

Exchange (NYSE), i.e., Google (GOOG) and Nike 

(NKE) stock prices extracted from the Yahoo Finance 

website. The reported results indicated that the proposed 

Long Short-Term Memory (LSTM) model could 

improve forecasting accuracy and is capable of tracing 

the evolution of stock prices for both stocks. A 

comparison study was reported in (Tiwari et al., 2020). 

The authors compared ANN and Fuzzy Logic (FL) in a 

problem of stock market prediction using the daily 

historical prices listed on the Bombay Stock Exchange 

(BSE). A Back Propagation (BP) algorithm was used to 

train the neural network. The experimental results of their 

work revealed that the neural network gave better 

prediction results in terms of the minimum value of mean 

square error. The authors in (Nabipour et al., 2020) 

conducted a comparison study between Decision Tree 
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(DT), Random Forest (RF), Adaptive Boosting 

(Adaboost), Extreme Gradient Boosting (XGBoost), 

Support Vector Classifier (SVC), Nave Bayes (NB), K-

Nearest Neighbors (KNN), Logistic Regression (LR), 

and ANN and two deep learning methods, Recurrent 

Neural Network (RNN) and LSTM. Ten years of 

historical data from four stock markets, namely 

Petroleum, Diversified Financials, Basic Metals, and 

Non-Metallic Minerals, were used. Ten technical 

indicators from the selected historical data were chosen 

as input values. They conclude that RNN and LSTM are 

superior models in both approaches compared with   

other models, and a significant improvement in the 

performance of models is observed when they use binary 

data as input values. In (Hiransha et al., 2018), four types 

of ANN architectures have been utilized, namely 

Multilayer Perceptron(MLP), Recurrent Neural 

Network(RNN), Long Short-Term Memory (LSTM), 

and Convolutional Neural Network (CNN), for 

predicting the stock prices of two different stock markets, 

the National Stock Exchange (NSE) of India and the New 

York Stock Exchange (NYSE). The authors compared 

the obtained results with the Autoregressive Integrated 

Moving Average (ARIMA) model. The results show that 

the neural network models outperform the ARIMA 

model.  Another study is discussed in (Botunac et al., 

2019). The performance of three different neural network 

models was compared on financial data using the Feed 

Forward Neural Network (FFNN), Recurrent Neural 

Network (RNN), and Long Short-Term Memory 

(LSTM). In their study, the data were  preprocessed with 

a simple moving average and filtered with a discrete 

wavelet transformation to achieve better results. Among 

the tested neural network models, better results were 

obtained using LSTM than other neural network models. 

A comparison between Autoregressive Integrated 

Moving Average (ARIMA), Back Propagation Neural 

Network (BPNN), and Genetic Algorithm (GA) was 

conducted by  (Alfred et al., 2015)  to predict the short-

term time series network traffic activity datasets, which 

were obtained from the ICT Universitas  Mulawarman. 

The performances of these models are compared based 

on mean squared error. Based on the results obtained, 

BPNN is found to be very efficient in capturing the 

structural relationships in time series data. Another  study 

reported by (Nikou et al., 2019), the study compared the 

performance of  Multilayer Perceptron (MLP), Long 

Short-Term Memory (LSTM), Random Forest( RF), and 

Support Vector Regression (SVR) with daily closing 

values of iShares MSCI United Kingdom exchange rates. 

They report that the LSTM model is a better 

predictive model in the prediction of the close price of 

iShares MSCI United Kingdom. 
 

3    Background 

In this section, we review the basic concepts of the 

underlying technologies used in this study.  

3.1   Back Propagation Neural Network 

The Back Propagation Neural Network (BPNN) is                

a machine learning algorithm, that aims to minimize the 

mean square error gradually between the actual and 

target outputs of the network  .The common structure of 

BPNN model is illustrated in Fig. 1. 

As viewed in architecture, there are three layers: an input 

layer, a hidden layer, and an output layer. The input layer 

is connected to the hidden layer by interconnection 

weights, and the hidden layer is connected to the output 

layer by interconnection weights.  Each layer has a 

number of nodes and each node represents a neuron. 

  

Figure (1). Back Propagation Neural Network Architecture 

 

BPNN requires a suitable choice of network architecture, 

which is the number of neurons required to form the 

network. It is important to identify the total number of 

neurons in the hidden layer. Selection of the neurons is 

done by the trial and error method. A small number of 

neurons may result in incorrect estimation   whereas more 

neurons result in overestimation. In addition, the 

formation of the network requires a proper choice of 

network layers. Increasing the number of layers increases 

the computational complexity of the neural network, 

which can increase the time taken for convergence. Each 

hidden neuron in BPNN performs a weight summation 

operation. The outputs of all hidden layer nodes are 

calculated as follows: 

ℎ𝑗 = 𝑓(∑ 𝑤𝑖𝑗𝑥𝑖

𝑛

𝑖=1

)                                                               (1) 

where i is the input node (i=1,2,…,n), j is the hidden layer 

node (j=0,1,2,…,m), 𝑤𝑖𝑗  is connection weight from input 

node i to hidden node j,  ℎ𝑗  is  the output of the jth node 

in the hidden layer, and 𝑓 is  the activation function of 

nodes. In our an model, we use the sigmoid function as 

activation function, which is defined as 

 

𝑓(𝑥)= 
1

1+𝑒𝑥𝑝(−𝑥)
                                                                  (2)                                                                                                                                                                      
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A suitable selection of the activation function is   a critical 

step that introduces nonlinearity into the network for the 

hidden layer, because it provides the ability of the 

network to capture the nonlinear relationship between 

input and output. Several BPNN training algorithms have 

been proposed for adjusting the connection weights, such 

as Gauss-Newton’s algorithm (Nandy et al., 2012) and 

the Levenberg–Marquardt algorithm (Mustafidah et al., 

2019). All algorithms use the gradient of the performance 

function to determine the adjustment of the weights to 

minimize the performance. That is the Widrow-Hoff 

learning rule, in which the network weights are moved 

along the negative of the gradient of the performance 

function, which is the steepest descent direction. The 

training process of the network occurs in the following 

steps. In the first step, the training samples were entered 

into the input layers. Then, the presented data 

propagates through the hidden layers to the output layers. 

In the second step, the errors are calculated by taking the 

difference between the actual and desired outputs. The 

network weights will be continuously adjusted by 

propagated back network error until the desired output 

error is obtained, which represents the minimum output 

error. This means that the smaller the output error, the 

better fit the model.  Python software provides effective 

machine learning libraries for building and optimizing 

neural network models which, has been considered in this 

study. The formula for the BP algorithm is described by 

the following equations: 

 

𝑊(𝑛) = 𝑊(𝑛 − 1) − 𝛥𝑊(𝑛),                                        (3)                                          

where, 

∆𝑊(𝑛) = 𝛾
𝜕𝐸

𝜕𝑊
(𝑛 − 1) + 𝜃∆𝑊(𝑛 − 1),                      (4)                                      

where γ is the learning rate, E is  the gradient of error 

function, and 𝜃𝛥𝑊(𝑛 − 1) the quantity of incremental 

weight.   

Back propagation networks have the ability to learn 
complicated multidimensional mappings. It can be used 

to simulate nonlinear mapping models, solve some real-

world problems, such as classification, and prediction; it 

is a well-known, powerful tool in problem solving for 

various stock price predictions. 

 

   Radial Basis Function Neural Network 3.2     

A Radial Basis Function Neural Network (RBFNN) is a 

type of feed forward neural network with the use of radial 

basis functions as activation functions. The basic 

structure of RBFNN is shown in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

Figure (2). The basic structure of an RBF neural network 

Typically, the network has three layers: an input layer, a 

hidden layer with activation nodes based on the Radial 

Basis Function (RBF), and a final output layer. Similar to 

the typical ANN structure, each layer consists of a set of 

nodes. The input layer receives the input vector and 

transforms its value to the hidden layer.  Each node in the 

hidden layer has its own RBF centered at a point and 

is connected to the input layer. The output layer produces 

the outcome of the prediction model. The output of the 

RBFNN is defined as a weighted average of the incoming 

signals from the hidden layer. In practice, the structure of 

RBFNN may require more neurons in a hidden layer than 

Feed Forward Neural Network (FFNN). The number of 

hidden neurons in the hidden layer is critical for 

determining the RBF model capability. 

The nonlinearity of the RBFNN model is presented by 

mapping the input data to hidden layers using the basis 

function, whereas a linear mapping appears from the 

hidden layers to the output layer. The activation function 

of the RBFNN can take different types of radial basis 

functions. A Gaussian activation function has been 

commonly used as an activation function in the hidden 

neurons of the RBF model. However, it is difficult for 

the Gaussian activation function to approximate constant 

values, and the models may suffer from an approximation 

of these values. A sigmoid function as the basis function 

of the network may replace the Gaussian functions, so 

more accurate results can be found by an RBF 

network(Wu and Wilamowski, 2013) . In our model, a 

sigmoid function was used to deal with this problem. 

When the sigmoid function is used, the common form of 

the kth node of the output layer that has the weight Wk 

and the neuron i of the hidden layer is as follows: 

𝑦𝑘 = ∑ 𝑤𝑘𝑖𝑒𝑥𝑝(
1

1 + 𝑒𝑥𝑝(−𝑥)
)

𝑛

𝑖=1

, 𝑘 = 1,2,3, . . , 𝑞 (5)   

 

RBFNN generally trains faster than BPNN due to the use 

of the radial basis functions and can effectively fit any 
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nonlinear function, and it is not easy to fall into the local 

optimal solution; RBFNN can improve the accuracy and 

decrease the training time complicity. 

RBF networks have many uses, such as time series 

prediction (Sohrabi et al., 2023), system control (Mehrsai 

et al., 2013), and classification(Jiang and Li, 2019). 

Many applications have shown that RBFNN can be a 

useful method for the stock market prediction. This is due 

to its ability to perform universal approximation and 

regularization, it can approximate any continuous 

function with high precision (Liao et al., 2003). 

 

3.3 Long Short-Term Memory 

Long Short-Term Memory (LSTM) neural network is an 

improved type of RNN with better performance in long-

term dependency in many applications (Qu and Zhao, 

2019).  RNN is a form of neural network that has the 

ability to process sequential inputs recurrently due to the 

internal time loops at each hidden layer unit in which the 

output of the unit at a specific time step is taken as the 

input for the next time step. However, the RNN has            

a limit in real practice, in that it is just able to record          

the information in a few past steps. It appears to 

have vanishing gradient problems when dealing with 

long time series data. The LSTM units have been 

proposed to address the vanishing gradient problem 

where the hidden layer is replaced by recurrent gates 

called forget gates. These gates allow modelling of long-

term dependences in sequence data and prevent the 

vanishing gradient problem (Gers et al., 2000, Graves 

and Graves, 2012, Nugaliyadde et al., 2019). LSTM 

networks are adapted for identifying long-term 

dependencies and using them for future prediction, which 

was impossible in a standard RNN architecture where the 

network could just learn a limited number of short-term 

time series. The key element of the LSTM is the 

appending of cell state or a memory cell, which is 

comprised of three basic gates: an input gate, a forget 

gate, and an output gate. The forget gate decides which 

information from the previous cell is completely to be 

kept or ignored. The input gate chooses which new values 

need to be updated in the cell state, and the output gate 

lets the cell state have an impact or not on the latest 

present time step. LSLM also has a number of hidden 

units. 

The sigmoid neural net layer and weights are used to 

assign importance to information. The stochastic gradient 

descent based algorithm is used to enforce constant error 

propagation (neither exploding nor vanishing) through its 

internal units. Fig.3 shows the architecture of the LSTM. 

 

 

 

 

 

 

 

 

  

 

Basic architecture of a LSTM                       Figure (3). 

 

The nature of the three basic gates of the LSTM can be 

described in the following steps: In the first step, the 

forget gate has to decide which   information to discard 

from cell state. The formula of the forget gate is 

characterized by the following equations: 

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑓)                                               (6)                                                     

𝑅𝑡 =
1

1+𝑒−𝑡                                                                            (7)                                                                                

where  ℎ𝑡−1, 𝑥𝑡  , 𝑅𝑡and 𝑓𝑡   represent the output at the 

previous time (t-1), input at the present timestamp (t), a 

Sigmoid function and  a forget gate, respectively, 𝑊𝑓 and 

𝑏𝑓are the weight matrices and bias vectors, respectively, 

that need to be learned during the training process. 

In the second step, the input gate layer decides which new 

information should be saved in the cell state. The input 

gate has the following mathematical representation: 
 

𝑖𝑡 = 𝜎(𝑊𝑖 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑖                                                   (8)                                                                                             

𝐶̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑐)                                       (9)  

Updating the information stored in the cell state has 

been  done by the following equation: 
 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗  𝐶̃𝑡  ,                                                    (10)                                                   

where 𝐶𝑡 , 𝐶𝑡−1   and 𝐶̃𝑡 represents the current cell state 

value , the last timestep cell state value, and        an update 

for the current cell state value at timestamp t respectively. 

In the third step, the output gate layer determines the 

output information. The characteristics of the output gate 

layer are expressed in the following equations: 
 

𝑂𝑡 = 𝜎(𝑊𝑜 . [ℎ𝑡−1, 𝑥𝑡]+𝑏𝑜) ,                                          (11) 
                                                                          

ℎ𝑡 = 𝑂𝑡 . 𝑡𝑎𝑛ℎ(𝐶𝑡) ,                                                         (12)   
                                                                       
where 𝑂𝑡  is the output gate that indicates the candidate 

for cell state at timestamp t and ℎ𝑡 is the LSTM block's 

output information at time t. 
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Building an LSLM model includes the following steps: 

Step1: The collected data is preprocessed to eliminate 

any undesirable or incomplete data. 

Step2: Divide the data into training and testing data. The 

training data is used to build the model and the test data 

to evaluate the model's performance. 

Step3: Selection of a suitable architecture for the LSLM 

Model. This step requires an appropriate choice of the 

number of the nodes and layers. 

Step4: Train the model by repeating the training cycle 

until the desired result is obtained. 

Step5: Making predictions and assessing the model's 

performance. 

 

4    Materials and Methods 

4.1   Dataset  

The historical data of the daily stock close prices for two 

different well-known NASDAQ-100 companies has been 

chosen to represent our dataset, namely Microsoft 

Corporation (MSFT) and Apple Inc. (AAPLE). Our 

dataset is taken from the Yahoo Finance website  and 

includes four years of  data, which is from January 26, 

2017 to December 26, 2020. Fig.4 shows two different 

closing stock prices. 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (4). Closing stock prices for MSFT and AAPLE 

Before using the dataset for the training process, it is 

important to take a preprocessing step. The preprocessing 

step used in this study is data normalization using the 

equation formula: 

𝑍′𝑖 =
𝑍𝑖−𝑚𝑖𝑛(𝑍𝑖)

𝑚𝑎𝑥(𝑍𝑖)−𝑚𝑖𝑛(𝑍𝑖)
    ,                                                   (13)                                                     

where  𝒁′𝒊  is normalized values, 𝑚𝑖𝑛(𝑍𝑖)  is the 

minimum value of input 𝒁𝒊, and 𝒎𝒂𝒙( 𝒁𝒊)is the 

maximum value of input  𝒁𝒊. 

The normalization process aims to make data statistically 

comparable. This can also help the learning process be 

more stable. Data normalization helps to smooth the 

convergence, which prevents dramatic changes in the 

gradient.  After processing, we anti-normalize the output 

with the following equation:   

𝑦𝑡̂ = 𝑦𝑡
′(𝑦𝑚𝑎𝑥+ 𝑦𝑚𝑖𝑛) + 𝑦𝑚𝑖𝑛 ,                                     (14)             

where 𝑦𝑡
′ represents the predicted data after anti-

normalization and   𝑦𝑚𝑎𝑥 and  𝑦𝑚𝑖𝑛 the minimum and 

maximum data, respectively, of output  𝑦𝑡
′. 

 

Our dataset was divided into 90:10 ratios for training and 

testing purposes, respectively. For all models, the 

training dataset is used to train the neural network models 

and update model parameters. The test dataset was used 

to optimize the models for data prediction, in other 

words, the test dataset was used for simulating the trained 

network and checking the accuracy of the trained 

network. The accuracy of the model on the test dataset 

gives you a very rough estimate of how accurate the 

model will be when presented with new, previously 

unseen data. 

4.2   Model Design  

Our aim looks at the comparison of the three NNs models 

BPNN, RBFNN, and LSTM in a problem of stock market 

prediction. The basic principles of them have been 

detailed in the previous section. The process of training 

algorithms is described later in the paper. After training 

the proposed models and evaluating their accuracy, we 

compared the output data given by the network with the 

testing dataset. The results of these comparisons are 

given in detail in the later part of this paper. Fig.5 shows 

the block diagram of the methodology. 

 

Figure )5). Methodology block diagram 
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4.3   Performance Evaluation Criteria 

We select the following statistical metrics to evaluate the 

predictive performance of proposed models: Mean 

Absolute Error (MAE), Root Mean Square Error 

(RMSE), Mean Absolute Percentage Error (MAPE), and 

coefficient of determination (R2). MAE is the measure of 

the deviation between the actual and predicted values. 

MAPE is commonly presented the accuracy of the model 

as a percentage in which equation (16) is multiplied by 

100. The statistical matrix RMSE measures the mean 

square error of the actual and predicted values; its value 

is always positive and zero in the ideal case. The lower 

the MAPE, MAE and RMSE values, the closer the 

predicted time series values are to actual values, 

indicating that the model is accurate. R2 also gives the 

accuracy of the model as percentage. The smaller values 

present the better predictor model; it gives you 

knowledge of how well the model predicts the new 

dataset. Its values are between zero and one, and the 

largest value is the better value. The equations for these 

criteria are as follows: 

 
 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑡 − 𝑦𝑡

′)2

𝑛

𝑖=1

,                                          (15) 

 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑦𝑡 − 𝑦𝑡
′|

𝑦𝑡

𝑛

𝑖=1

× 100 ,                             (16) 

𝑀𝐴𝐸 =  
1

𝑛
∑

|𝑦𝑡 − 𝑦𝑡
′|

𝑦𝑡

            

𝑛

𝑖=1

                                  (17) 

 

R2 = 1 −  
∑ (yt − yt

′)2n

i=1

∑ (yt
′)2n

i=1

,                                           (18) 

 

Where 
 

𝑦𝑡  is the actual value  at the time t 

𝑦𝑡
′ is the forecast value at the time t 

n is  the total number of tested datasets 
 

 

4.4   Experimental implementation 
 

All experiments were conducted in Python with 

PyCharm Professional Edition 2020.2.1 on an Intel Core 

i5-5200U CPU machine. The implementation includes 

construction, training, testing, and evaluation of neural 

network models.  All neural network models were 

developed using the open source deep learning tool 

Tensorflow (Abadi et al., 2016) with Keras (Ketkar, 

2017) version 2.0.8 as the front-end interface. The Adam 

optimizer was applied to all of the neural network models 

for weight modification and Mean Square Error (MSE) 

was used as the cost function. The formula for MSE is 

given as follows: 

MSE =
1

n
∑(yt − yt

′)2

n

i=1

,                                                 (19) 

 

where 𝐲𝐭  and 𝐲𝐭
′ are actual and predicted values at time t, 

respectively, and n is the data size of the trained set.  
 

To ensure keeping the same conditions when training 

different models, a single hidden layer was used in all 

prediction neural network models and one fully 

connected layer has been used as the output layer, which 

gives the predicted next day value. Furthermore, the 

batch size is considered as 32, and epochs are kept 

constant at 200 for all prediction models. To evaluate the 

performance of the models, we used the prediction 

accuracy indicators. The accuracy indicators tell us how 

accurate the forecast model is at predicting future trend 

movements. To indicate the performance of the ANN 

models, the optimal number of hidden layer neurons 

should be decided in ANNs. We start our implementation 

with the first method of PBNN. A number of hidden layer 

neurons have been tried, which are illustrated in Table 1 

for two datasets. A sigmoid transfer function was used in 

the hidden layers, and a rectified linear unit activation 

function was used in the output layer. The optimal 

number of hidden layers of neurons is based on the 

smallest MSE value generated, which is shown in bold in 

Table 1.  It is noticed that as the number of hidden 

neurons increases, the mean square error increases 

gradually. The second method is   RBFNN; we start the 

experiment by determining the optimal number of hidden 

neurons in the network architecture.  A number of hidden 

layer neurons were modified, and Table 2 shows the 

results of this experiment for two data series. The value 

of the optimum hidden neuron that was chosen in this 

study is given in bold in the table with the smallest test 

mean square error value. Furthermore, the output layer of 

transform functions was chosen to be the sigmoid transfer 

function in the RBF model. 

 
Table (1). The result of the determination of the number of   

neurons in the hidden layer of PBNN 
 

 

 

No. of neurons MSE    

AAPLE MSFT 

100 0.000105 0.000108 

200 0.000340 0.000120 

300 0.001482 0.000407 
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Table (2). The result of selecting the optimal number of 

neurons for the RBFNN's hidden layer 
 

 

 

The third model is the LSTM model. Similar to previous 

methods, the optimal number of neurons should be 

specified. In this model, a sigmoid activation function 

was used in the LSTM cells. The optimum number of 

neurons has been obtained after trying different values 

and the results of the experiment are presented in Table 

3. The optimal number is given in bold in the table. 

Furthermore, we used the dropout method on all layers of 

the network to prevent overfitting during network 

training and improve generalizability. The dropout units 

technique in a neural network depends on the value of the 

probability p of retaining a hidden unit in a neural 

network. To obtain the optimal value of p, which is   a 

hyperparameter in the dropout, we tried different values 

of p ranging from 0.2 to 0.6 after considering the optimal 

number of the neurons as 300 in the LSTM model and 

100 neurons in BPNN and RBFNN models, then we 

chose the best value of p that gives the best accuracy with 

a small amount of error. The results are given in Table 4, 

which indicates that the best accuracy is obtained with p 

= 0.2 in the BPNN and LSTM models, whereas the 

dropout with the probability of 0.4 in the RBFNN model 

has fewer errors, thus has been considered the optimum 

value of p in RBFNN. 

Table (3). The result of selecting the LSTM's optimal number 

of neuron. 

 

 

 

 

 

 

 

5    Results and Discussion 
 

Table 5 shows the summarized experimental results of 

three neural network models on the two different 

datasets; the best performing model is displayed in 

boldface.  By comparing the statistical errors for all 

models, the LSTM model achieves the lowest RMSE and 

MAPE, and the highest R2 on the prediction of both 

datasets. However, in terms of MAE, RBFNN reported   

the smallest errors value of 0.009586 on the prediction on 

AAPLE dataset, while on the prediction of MSFT 

dataset, LSTM has a better performance. LSTM model 

performed well because it does not depend on any 

previous information for prediction, which enables the 

model to understand the dynamic changes and patterns 

occurring in the current window.   This can be beneficial 

for non-stationary time series such as stock market. 

RBFNN model also performed well and has very close 

results to LSTM model. However, in the case of BPNN,  

 

 

 

the model has the worst performance across two stacks. 

This is due to its simple architecture, which could limit 

its capability to make predictions for non-stationary time 

series. We could also find from Table 5 that the AAPLE 

models show better results than the MSFT models. The 

AAPLE models have the smallest values of RMSE, 

MAPE, and MAE and the determination R2 has a much 

closer fitted result on the AAPLE dataset.  Fig. 6, Fig. 7 

and Fig.8  display the actual test data versus predicted test 

data graphs of three models on two different stock prices 

for one-day ahead prediction. The red lines indicate the 

predicted test data, and the black lines indicate the real 

test data for MSFT stocks. The orange lines indicate the 

predicted test data and the black lines indicate the real 

test data in the AAPLE stock prices.  

It can be seen that, generally, all of these models perform 

relatively well, demonstrating that the past prices of 

stocks have predictive power and can be used to predict 

No. of neurons MSE 

AAPLE MSFT 

100 0.000184 0.000200 

200 0.000208 0.000209 

300 0.000220 0.000261 

 

No. of 

hidden 

layer  

 

Number of 

neurons  

MSE 

AAPLE MSFT 

1 100 0.000183 0.  001925  

1 200 0.000153 0.001326 

1 300 0.000140 0.001100 

Dropout 

 rate p 

MSE 

PBNN RBFNN LSTM 

  

0.2 

AAPLE MSFT AAPLE MSFT AAPLE MSFT 

0.000401  0.  000350  0.000223 0.000211 0.000135 0.000841 

0.3 0.000941 0.000474 0.000151 0.000179 0.000322 0.001344 

0.4 0.001048 0.002277 0.000130 0.000162 0.000281 0.001915 

0.5 0.003536 0.002015 0.000148 0.000183 0.000422 0.002907 

0.6 0.005195 0.005153 0.000161 0.000150 0.000683 0.003288 

Table (4). The result of estimating the optimal dropout rate p 
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future prices. The predicted output fairly overlaps the 

target output, indicating a good prediction. Additionally, 

the turning points are forecasted quite timely. When there 

is a trend in the actual price, the predicted value follows 

accordingly and closely. It is also clear that the models 

that were proposed using the AAPLE dataset have better 

fitted results than the MSFT dataset. 
 

 

Table (5). Results of the three methods 
 

 

     

 

 

 

 

Dataset AAPLE MSFT 

Metrics RMSE MAE MAPE R2 RMSE MAE MAPE R2 

 

Models 

BPNN 0.024895  0.020301 4.493746 0.988906 0.036203 0.03343 4.791764 0.982899 

RBF 0.012556 0.009586 2.076750 0.997178 0.030193 0.015742 

 

1.506608 0.988105 

LSTM 0.011353 0.010190 1.213605 0.997692 0.013394 0.  010510  1.895189 

 

0.997659 

Figure (6). BPNN model predicted results. 

Figure (7). RBFNN model Predicted results. 

Figure (8). LSTM model predicted result. 
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6      Conclusions and Future Work 

This study compares the performance of three neural 

network learning models, i.e., BPNN, RBFNN, and 

LSTM, by predicting movements in the one-day ahead of 

stock prices. The study address the following question: 

which neural network models provide the best predictive 

performance for both datasets? By implementing the 

proposed methods and checking the accuracy of the 

models using statistical errors, we conducted a 

comparative study between three NN models for 

predicting the stock market. With evidence from the 

forecast accuracy of two stocks' close prices. We find that 

all techniques perform well with acceptable accuracy, but 

the LSTM model beats other models in the prediction of 

the close prices on two datasets, and its performance was 

followed by that of RBFNN model. Which indicates that 

it may be conceivable to utilize the LSTM model as an 

effective approach to successfully predict the future 

pattern of stock prices based on the results of this study, 

the following recommendations can be made: 

• Deep neural network models is better than the 

other techniques that have been utilized in this 

study.  Researchers and investors are 

recommended to employ these methods for 

predicting the stock price.  

• We recommend using hybrid models such as 

optimized LSTM with optimization techniques 

such as Particle Swarm Optimization (PSO) and 

combining BPNN and RBNN with other AI 

methods such as Fuzzy Logic (FL), Support 

Vector Machine (SVM), and Genetic Algorithm 

(GA), a lot of research work has been found that 

hybrid models improve stock prediction 

accuracy. 

• The feature selection step should be taken under 

consideration in future work and compared with 

the results obtained in this study. It is suggested 

that the researchers use feature selection 

algorithms to extract the features of stock prices, 

such as Deep Belief Networks (DBN), the  
 

Discrete Wavelet Transformation (DWT) 

technique, Relief, maximum Relevance and 

Minimum Redundancy (mRMR), and LASSO. 

Such techniques successfully remove certain 

types of noise from data and improve the quality 

of the neural network model. 
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