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The study of differential equations has been the object of many researchers over 

the last decades. Different approaches and various techniques have been adopted 

to investigate the qualitative properties of their solutions. Recently and driven by 

their widespread applications, the investigation of differential equations of second 

order has drawn significant attention. The oscillation of solutions has been the 

main features that have attracted consideration. Therefore, it has been intended to 

use the Riccati Transformation Technique for obtaining several new oscillation 

criteria for different classes of nonlinear differential equations of the second order 

with a damping term. Oscillatory behavior has taken into account through this 

study of solutions of some differential equations. Comparisons between our 

results and the previously known results have presented. The relevance of our 

theorems has been clear due to carefully selected examples. As a conclusion, our 

aim is to provide some results to improve and/or extend some of well-known 

results in the literature. 
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1 Introduction 

         This paper concerned with oscillation of the 

solution to the damped ordinary differential equation of 

the form: 

(𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡))′ + ℎ(𝑡)𝑥 ′(𝑡) + 𝑞(𝑡)𝑔(𝑥(𝑡)) =

𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)),                                                          (1) 

where hr ,,  and q are continuous functions  on the 

interval [𝑡0,∞), 𝑡0 ≥ 0
 
r(t) is a positive function ,𝜓 is 

continuous function on the real line ℝ, with 𝜓(𝑥) >

0, ∀𝑥 ∈ ℝ and 𝑔 is continuously differentiable  function  

on the real line ℝ except possible at 0 with 𝑥𝑔(𝑥) > 0 

and 𝑔′(𝑥) ≥ 𝑘 > 0for all 𝑥 ≠ 0. 𝐻is a 

continuous..function..on [𝑡0,∞) × ℝ
2
 with  

𝐻(𝑡,𝑥(𝑡)𝑥′(𝑡))

𝑔(𝑥(𝑡))
≤ 𝑝(𝑡) for all 𝑡𝜖[𝑡0,∞) 

Throughout this study, our attention is only to 

the solutions of the differential equation (1) that exist on 

some ray[𝑡𝑥 ,∞)  where 𝑡𝑥 may depend on the particular 

solution. 

In the past decades, the problems regarding the study of 

oscillation criteria of differential equations with damping 

have become an important area of research because such 

equations arise in many real life problems; see the 

research papers (Ayanlar & Tiryaki, 2000, Elabbasy & 

Elhaddad, 2007, Kirane & Rogovchenko, 2001, Mustafa et al., 

2004, Nagabuchi &Yamamoto, 1988, Naito, 1974, S. & 

Rogovchenko, 2003, Rogovchenko &Tuncay, 2007,  

Rogovchenko &Tuncay, 2008, Rogovchenko & Tuncay, 2009, 

Saker et al.,2003, Tunc &  Avci, 2012, Wang &  Song, 2013,  

Xiaoling &  Chenghui, 2013, Zhang & Song, 2011 and  Zheng, 

2006) and the references cited therein. In particular, 

second order-damped differential equations are used in 

the study of vehicle noise, vibration and harshness of 

vehicles (NVH). In what follows, we present the 

background details that motivate the contents of this 

paper. 
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(Elabbasy et al. 2005, Lu &  Meng, 2007, and 

Rogovchenko &Tuncay, 2008), established some new 

oscillation conditions of Kamanev and Philos type for the 

Eq. (1) with 𝜓(𝑥(𝑡)) = 1, 𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) = 0and they 

did not sign conditions onℎ(𝑡), 𝑞(𝑡). Rogovchenko & 

Tuncay, (2009)  considered Eq. (1) with 

𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) = 0and Berkan (2008), continued the 

investigation of new oscillation of Eq. (1) but he put 

𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) = 𝐻(𝑡).  

Zhang & Song, (2011) considered equation (1) when 

replaced explicit function 𝑞(𝑡)𝑔(𝑥(𝑡)) by implicit 

function 𝑄(𝑡, 𝑥) they obtained certain necessary criteria 

for oscillation of Eq. (1). 

Wang & Song, (2013), established certain 

oscillation standards for Eq. (1), with 𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) =

0, 
𝑔(𝑥(𝑡))

𝑥(𝑡)
≥ 𝑘 > 0 for 𝑥 ≠ 0. 

Xiaoling & Chenghui, (2013), established an 

important extension of the celebrated oscillation criteria 

for (1), they studied it with 𝜓(𝑥(𝑡)) = 1, 𝑔(𝑥(𝑡)) =

𝑔(𝑥(𝜏(𝑡))) and𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) = 0.
   

In the same way, we localize generalize Reccati 

technique to derive new oscillation conditions for Eq. (1). 

Our results are more general than the previous results. 

Precisely chosen examples are provided to demonstrate 

the influence of impulses on the oscillatory actions of all 

solutions in this class. 

2    Definitions 

Definition 1. A solution 𝑥(𝑡) of Eq. (1) is oscillatory if 

it has arbitrarily large zeros; otherwise, we call it non-

oscillatory. The Eq. (1) is oscillatory if all of its solutions 

oscillate. 
 

Definition 2. Equation (1) is said to be super-linear if 

0 < ∫
𝑑𝑢

𝑔(𝑢)
< ∞

±∞

±𝜀
for every all 𝜀 > 0 

3    Oscillation Results 

In this section, I introduce some theorems that include 

new conditions for ensuring the oscillation of solutions 

equation (1). 

Theorem 1:  Suppose that  

(1) 𝑐1 ≤ 𝜓(𝑥(𝑡)) ≤ 𝑐2 for all  𝑥𝜖ℝ and  

(2) ℎ(𝑡) ≤ 0for 𝑡 ≥ 𝑡0hold. 

Let 𝜌 be a continuously differentiable positive function 

over[𝑇,∞) such that 𝜌′(𝑡) ≥ 0 

over [𝑇,∞);
 
 (𝜌′(𝑡)𝑟(𝑡))′ ≤ 0and such that

 
 (3)  𝑙𝑖𝑚

𝑡→∞
∫

1

𝜌(𝑠)𝑟(𝑠)

𝑡

𝑇0
𝑑𝑠 = ∞,   

 (4) 

      

𝑙𝑖𝑚
𝑡→∞

∫ 𝑅(𝑠)𝑑𝑠
∞

𝑇0
= ∞; 𝑅(𝑠) = 𝜌(𝑠)[𝑞(𝑠) − 𝑝(𝑠)] 

−
1

4𝐴

(𝜌′(𝑠))2

𝜌(𝑠)
𝑟(𝑠),

      A is constant.

 
Then, every solution of equation (1) is oscillatory. 

Proof: Without loss of generality, we may hypothesize 

that there exists a solution )(tx of equation (1) such that   

𝑥(𝑡) > 0𝑜𝑛[𝑇,∞), 𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑇 ≥ 𝑡0 ≥ 0. 

Define   

𝜔(𝑡) =
𝑟(𝑡)𝜓(𝑥(𝑡))𝑥′(𝑡)

𝑔(𝑥(𝑡))
, 𝑡 ≥ 𝑇                                        (1) 

   

For all 𝑡 ≥ 𝑇0 then differentiating Equality (1) and 

using Eq. (1), we obtain 

 

(
𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
)

′

≤
𝐻(𝑡, 𝑥 ′(𝑡), 𝑥(𝑡))

𝑔(𝑥(𝑡))
− 𝑞(𝑡) 

−
ℎ(𝑡)𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
−

𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)𝑔′(𝑥(𝑡))𝑥 ′(𝑡)

𝑔2(𝑥(𝑡))
 

 

Since 𝑔′(𝑥(𝑡)) ≥ 𝑘and using the condition (1) we 

have 
 
 

(
𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
)

′

≤ −[𝑞(𝑡) − 𝑝(𝑡)] −
ℎ(𝑡)𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
 

                            −
𝑘𝑟2(𝑡)𝜓2(𝑥(𝑡))(𝑥′(𝑡))6

𝑐2𝑔2(𝑥(𝑡))
, 𝑡 ≥ 𝑇       (2) 

   

Multiplying the inequality (2) by and integrate 

form T to t we obtain 

𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
≤ 𝐶𝑇 − ∫ 𝜌(𝑠)[𝑞(𝑠) − 𝑝(𝑠)]

𝑡

𝑇

𝑑𝑠 

                                          −∫
𝜌(𝑠)ℎ(𝑠)𝑥′(𝑠)

𝑔(𝑥(𝑠))
𝑑𝑠

𝑡

𝑇
 

                          +∫ [𝜌′(𝑠)𝜔(𝑠) − 𝐴
𝜌(𝑠)

𝑟(𝑠)
𝜔2(𝑠)]

𝑡

𝑇
𝑑𝑠   (3) 

    Where 𝐶𝑇 =
𝜌(𝑇)𝑟(𝑇)𝜓(𝑥(𝑇))𝑥′(𝑇)

𝑔(𝑥(𝑇))
.

 

)(t



SJFSSU Vol. 3, No. 2 (2023) 126-132                                                                                                                 Salhin 

 

128 
Open Access Article is distributed under a CC BY 4.0 Licence. 

By using complement square, the inequality presented by 

(3) can be written as  
 
 

𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
≤ 𝐶𝑇 − ∫ 𝜌(𝑠)[𝑞(𝑠) − 𝑝(𝑠)]

𝑡

𝑇

𝑑𝑠 

                               −∫
𝜌(𝑠)ℎ(𝑠)𝑥′(𝑠)

𝑔(𝑥(𝑠))
𝑑𝑠

𝑡

𝑇
             

             +∫ [𝐴
𝜌(𝑠)

𝑟(𝑠)
(𝑊2(𝑠) − (

𝜌′(𝑠)𝑟(𝑠)

2𝐴𝜌(𝑠)
)

2

)]
𝑡

𝑇
                (4) 

By the Bonnet theorem, for a fixed 𝜀𝑡 ∈ [𝑇, 𝑡] such that 

−∫
𝜌(𝑠)ℎ(𝑠)𝑥 ′(𝑠)

𝑔(𝑥(𝑠))

𝑡

𝑇

𝑑𝑠 = −𝜌(𝑇)ℎ(𝑇)∫
𝑥 ′(𝑠)

𝑔(𝑥(𝑠))

𝜀𝑡

𝑇

𝑑𝑠 

Since(−𝜌(𝑡)ℎ(𝑡)) ≥ 0 and the equation (1) is super-

linear, we have 

−∞ < ∫ −𝜌(𝑠)ℎ(𝑠)
𝑥′(𝑠)

𝑔(𝑥(𝑠))

𝑡

𝑇
𝑑𝑠 ≤ 𝐵,                         (5)                                        

where 𝐵 = −𝜌(𝑇)ℎ(𝑇) ∫
𝑑𝑢

𝑔(𝑢)
.

∞

𝑥(𝑇)
 

By (5) and the condition (4), (3) become 

𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
≤ 𝐶𝑇 + 𝐵1 − ∫ 𝑅(𝑠)

𝑡

𝑇

𝑑𝑠

 
By the condition (4), we have 

   𝑙𝑖𝑚
𝑡→∞

𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥′(𝑡)

𝑔(𝑥(𝑡))
= −∞. 

Thus, there exists 𝑇1 ≥ 𝑇such that 𝑥 ′(𝑡) < 0for all    

𝑡 ≥ 𝑇1 
The condition (4) also implies that there exists 

𝑇2 ≥ 𝑇1such that                                                                                           

       ∫ 𝜌(𝑠)(𝑞(𝑠) − 𝑝(𝑠))
𝑇2

𝑇1
𝑑𝑠 = 0and        

∫ 𝜌(𝑠)(𝑞(𝑠) − 𝑝(𝑠))
𝑡

𝑇2
𝑑𝑠 ≥ 0  for 𝑡 ≥ 𝑇2                                  

Multiplying equation (1) by𝜌(𝑡), from the definitions of 

the functions and condition (2), we get 

𝜌(𝑡)(𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡))′ + 𝜌(𝑡)ℎ(𝑡)𝑥 ′(𝑡) 

+𝜌(𝑡)𝑞(𝑡)𝑔(𝑥(𝑡)) = 𝜌(𝑡)𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) 

𝜌(𝑡)(𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡))′ + 𝜌(𝑡)𝑔(𝑥(𝑡))𝑞(𝑡) 

≤ 𝜌(𝑡)𝑔(𝑥(𝑡))𝑝(𝑡), 𝑡 ≥ 𝑇2.                                         (6) 

Integrate the inequality (6) from 𝑇2 to 𝑡 we obtain 

𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡) ≤ 𝜌(𝑇2)𝑟(𝑇2)𝜓(𝑥(𝑇2))𝑥
′(𝑇2) 

+∫ 𝜌′(𝑠)𝑟(𝑠)𝜓(𝑥(𝑠))𝑥 ′(𝑠)
𝑡

𝑇2

𝑑𝑠 

−𝑔(𝑥(𝑡))∫ 𝜌(𝑠)(𝑞(𝑠) − 𝑝(𝑠))
𝑡

𝑇2

𝑑𝑠 

+∫ 𝑔′(𝑥(𝑠))𝑥 ′(𝑠)
𝑡

𝑇2
∫ 𝜌(𝑢)(𝑞(𝑢) − 𝑝(𝑢))𝑑𝑢𝑑𝑠

𝑠

𝑇2
   

By the condition (1) and the Bonnet’s theorem, for     

𝑡 ≥ 𝑇2there exists 𝛾𝑡 ∈ [𝑇2, 𝑡] such that 

𝑐2𝜌(𝑡)𝑟(𝑡)𝑥 ′(𝑡) ≤ 𝜌(𝑇2)𝑟(𝑇2)𝜓(𝑥(𝑇2))𝑥
′(𝑇2) + 

𝑐1𝜌
′(𝑇2)𝑟(𝑇2)[𝑥(𝛾𝑡) − 𝑥(𝑇2)] 

−𝑔(𝑥(𝑡))∫ 𝜌(𝑠)(𝑞(𝑠) − 𝑝(𝑠))
𝑡

𝑇2

𝑑𝑠 

+∫ 𝑔′(𝑥(𝑠))𝑥 ′(𝑠)
𝑡

𝑇2
∫ 𝜌(𝑢)(𝑞(𝑢) − 𝑝(𝑢))

𝑠

𝑇2
𝑑𝑢𝑑𝑠, 𝑡 ≥ 𝑇2 

Thus 

𝑐2𝜌(𝑡)𝑟(𝑡)𝑥 ′(𝑡) ≤ 𝜌(𝑇2)𝑟(𝑇2)𝜓(𝑥(𝑇2))𝑥
′(𝑇2), 𝑡 ≥ 𝑇2 

Dividing the last inequality by𝜌(𝑡)𝑟(𝑡), integrate from 

𝑇2to 𝑡 and the condition (3), we have 

𝑐2𝑥(𝑡) ≤ 𝑐2𝑥(𝑇2) 

+𝜌(𝑇2)𝑟(𝑇2)𝜓(𝑥(𝑇2))𝑥
′(𝑇2) ∫

𝑑𝑠

𝜌(𝑠)𝑟(𝑠)

𝑡

𝑇2
→ −∞      

𝑎𝑠 𝑡 → ∞, that is a inconsistency to the fact that 𝑥(𝑡) >

0for 𝑡 ≥ 𝑇. This complete the proof. 

Theorem 2: Suppose that the condition (1) hold, and 

  (5)     ∫
𝑑𝑠

𝑟(𝑠)
≤ 𝑘1

∞

𝑇
, 𝑘1 > 0 

  (6)    ∫
𝜓(𝑢)𝑑𝑢

𝑔(𝑢)

±∞

±𝜀
< ∞𝑓𝑜𝑟𝑎𝑙𝑙𝜀 > 0. 

 

Furthermore, suppose that there exists a positive 

continuous differentiable function  𝜌 on the interval 

[𝑡0,∞) with 𝜌(𝑡) is a non-decreasing function on the 

interval[𝑡0,∞)such.that                                                 

(7)𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 ∫
1

𝑟(𝑠)𝜌(𝑠)
∫ 𝜌(𝑢) [𝑞(𝑢) − 𝑝(𝑢) −

𝑠

𝑇

𝑡

𝑇

     
ℎ2(𝑢)

4𝑐1𝑘𝑟(𝑢)
] 𝑑𝑢𝑑𝑠 = ∞,       

 

where 𝜌: [𝑡0,∞) → (0,∞). 
 

Thus, each solution of super-linear equation (1) is 

oscillatory. 
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Proof: Without loss of generality, we can suppose that 

there exists a solution 𝑥(𝑡)of equation (1) such that  

𝑥(𝑡) > 0𝑜𝑛[𝑇,∞)𝑓𝑜𝑟𝑠𝑜𝑚𝑒𝑇 ≥ 𝑡0 ≥ 0. Define    

𝜔(𝑡) =
𝜌(𝑡)𝑟(𝑡)𝜓(𝑥(𝑡))𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
, 𝑡 ≥ 𝑇

 

This and by the condition (1) and Eq. (1), we have 

𝜔′(𝑡) ≤ 𝜌(𝑡)𝑝(𝑡) −
𝜌(𝑡)ℎ(𝑡)𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
− 𝜌(𝑡)𝑞(𝑡) 

                     +
𝜌′(𝑡)

𝜌(𝑡)
𝜔(𝑡) −

𝑐1𝑘𝜌(𝑡)𝑟(𝑡)(𝑥 ′(𝑡))2

𝑔2(𝑥(𝑡))
, 𝑡 ≥ 𝑇 

Thus for 𝑡 ≥ 𝑇, we have 

𝜌(𝑡) (
𝜔(𝑡)

𝜌(𝑡)
)

′

≤ 𝜌(𝑡)𝑝(𝑡) − 𝜌(𝑡)𝑞(𝑡) −
𝜌(𝑡)ℎ(𝑡)𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
 

                                   −
𝑐1𝑘𝜌(𝑡)𝑟(𝑡)(𝑥 ′(𝑡))2

𝑔2(𝑥(𝑡))
, 𝑡 ≥ 𝑇 

𝜌(𝑡)[𝑞(𝑡) − 𝑝(𝑡)] ≤ −𝜌(𝑡) (
𝜔(𝑡)

𝜌(𝑡)
)

′

 

                                         −
𝜌(𝑡)ℎ(𝑡)𝑥 ′(𝑡)

𝑔(𝑥(𝑡))
  

−
𝑐1𝑘𝜌(𝑡)𝑟(𝑡)(𝑥 ′(𝑡))2

𝑔2(𝑥(𝑡))
, 𝑡 ≥ 𝑇 

Integrate from 𝑇 to 𝑡, we obtain 
 

∫ 𝜌(𝑠)[𝑞(𝑠) − 𝑝(𝑠)]
𝑡

𝑇

𝑑𝑠 ≤ ∫ −𝜌(𝑠) (
𝜔(𝑠)

𝜌(𝑠)
)

′𝑡

𝑇

𝑑𝑠 

                                                 −∫
𝜌(𝑠)ℎ(𝑠)𝑥 ′(𝑠)

𝑔(𝑥(𝑠))

𝑡

𝑇

𝑑𝑠 

                    −∫
𝑐1𝑘𝜌(𝑠)𝑟(𝑠)(𝑥 ′(𝑠))2

𝑔2(𝑥(𝑠))
𝑑𝑠,

𝑡

𝑇

      𝑡 ≥ 𝑇 

−∫
𝜌(𝑠)ℎ(𝑠)

𝑔(𝑥(𝑠))
+

𝑐1𝑘𝜌(𝑠)𝑟(𝑠)(𝑥 ′(𝑠))2

𝑔2(𝑥(𝑠))

𝑡

𝑇

𝑑𝑠 

= −∫

[
 
 
 
 
 √𝑐1𝑘𝜌(𝑠)𝑟(𝑠)

𝑥 ′(𝑠)

𝑔(𝑥(𝑠))

+
1

2
√

𝜌(𝑠)

𝑐1𝑘𝑟(𝑠)
ℎ(𝑠)

]
 
 
 
 
 
2

𝑑𝑠
𝑡

𝑇

 

          +
1

4𝑘𝑐1

∫
𝜌(𝑠)ℎ2(𝑠)

𝑟(𝑠)

𝑡

𝑇

𝑑𝑠 

≤
1

4𝑘𝑐1

∫
𝜌(𝑠)ℎ2(𝑠)

𝑟(𝑠)

𝑡

𝑇

𝑑𝑠 

By the Bonnet’s theorem, since 𝜌(𝑡) is a non-decreasing 

function on the interval[𝑡0,∞), there exists                  

𝑇1 ∈ [𝑇, 𝑡]such that 

)1(

1)(
)(

)(

)(
)(

1 )(

)(
)(

1 )(

)(
)(

)(

)(
)(

T

T
t

t

t
t

ds
t

T s

s

ds

d
t

ds
t

T s

s
t

t

T s

s
s


























+−=

−=





−=



−



























                   (7) 

From the inequalities (7) and (5) in the inequality (4), we 

have 

∫ 𝜌(𝑠) [𝑞(𝑠) − 𝑝(𝑠) −
ℎ

2(𝑠)

4𝑐1𝑘𝑟(𝑠)
] 𝑑𝑠

𝑡

𝑇

 

≤ −𝜌(𝑡)
𝜔(𝑡)

𝜌(𝑡)
+ 𝜌(𝑡)

𝜔(𝑇)1

𝜌(𝑇1)
. 

∫ 𝜌(𝑠) [𝑞(𝑠) − 𝑝(𝑠) −
ℎ

2(𝑠)

4𝑐1𝑘𝑟(𝑠)
] 𝑑𝑠

𝑡

𝑇

≤ −𝜔(𝑡) 

+𝜌(𝑡)
𝜔(𝑇)1

𝜌(𝑇1)
.

 

∫ 𝜌(𝑠) [𝑞(𝑠) − 𝑝(𝑠) −
ℎ

2(𝑠)

4𝑐1𝑘𝑟(𝑠)
] 𝑑𝑠

𝑡

𝑇

≤ −𝜔(𝑡) 

 

+𝜌(𝑡)
𝜔(𝑇)1

𝜌(𝑇1)
.
  

Integrating the last inequality divided by
 

𝜌(𝑡)𝑟(𝑡) from 𝑇 to 𝑡, taking the limit superior on both 

sides and by conditions (5) and (6), we have 

𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 ∫
1

𝑟(𝑠)𝜌(𝑠)
∫ 𝜌(𝑢) [𝑞(𝑢) − 𝑝(𝑢)

𝑠

𝑇

𝑡

𝑇

−
ℎ

2(𝑠)

4𝑐𝑘𝑟(𝑠)
] 𝑑𝑢𝑑𝑠 

 

≤ 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 {(
𝜔(𝑇1)

𝜌(𝑇1)
) ∫

𝑑𝑠

𝑟(𝑠)

𝑡

𝑇
− ∫

𝜓(𝑢)𝑑𝑢

𝑔(𝑢)

𝑥(𝑡)

𝑥(𝑇)
}   

< ∞     𝑎𝑠𝑡 → ∞,  

which contradicts to the condition (7). Hence, the proof 

is completed.  
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4     Discussion 

A set of new oscillation conditions are stated and proved 

which extend and improve previous oscillation criteria 

and cover the cases which are not covered by known 

results. Some of illustrative examples are provided to 

show the applications of the oscillation criteria and the 

comparisons between our results and previous results in 

the literature. 

Example1: Consider the following differential equation 

(
1

𝑡
(
𝑥6(𝑡) + 2

𝑥6(𝑡) + 1
)𝑥 ′(𝑡))

′

− 𝑡2𝑥 ′(𝑡) + (𝑡 +
𝑠𝑖𝑛 𝑡

𝑡
) 𝑥5(𝑡)  

                              =
2𝑥12(𝑡) 𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠(𝑥′(𝑡)+1)

(𝑥7+1)𝑡3 , 𝑡 ≥
𝜋

2
    

  Here,  

 𝑟(𝑡) =
1

𝑡
, ℎ(𝑡) = −𝑡2, 𝑞(𝑡) = 𝑡 +

𝑠𝑖𝑛 𝑡

𝑡
, 𝑔(𝑥) = 𝑥5,

 

𝐻(𝑡, 𝑥(𝑡), 𝑥 ′(𝑡)) =
2𝑥12(𝑡) 𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠(𝑥′+1)

(𝑥7+1)𝑡3 ,
 

for all𝑥 ≠ 0and 𝑡 > 0.            

 
𝐻(𝑡,𝑥(𝑡),𝑥′(𝑡))

𝑔(𝑥(𝑡))
=

2𝑥12(𝑡) 𝑠𝑖𝑛 𝑡 𝑐𝑜𝑠(𝑥′+1)

(𝑥7+1)𝑡3 ×
1

𝑥5(𝑡)
 

≤
2

𝑡3
= 𝑝(𝑡)

 

for all𝑥 ≠ 0and 𝑡 > 0. 𝜓(𝑥) =
𝑥6+2

𝑥6+1   
  and  

1 ≤ 𝜓(𝑥) ≤ 2
 

for all 𝑥 ∈  ℝ,  

𝜌(𝑡) = 𝑡, 𝜌′(𝑡)𝑟(𝑡) =
1

𝑡
> 0, (𝜌(𝑡)ℎ(𝑡))′ = −3𝑡2 < 0 

𝑎𝑛𝑑(𝜌′(𝑡)𝑟(𝑡))′ = (
1

𝑡
)
′

=
−1

𝑡2 < 0𝑓𝑜𝑟𝑎𝑙𝑙𝑡 > 0.            

So, can note that                             

 

∫
𝑑𝑠

𝜌(𝑠)𝑟(𝑠)

∞

𝑡0

= ∫ 𝑑𝑠
∞

𝑡0

= ∞, 

𝑅(𝑠) = 𝑠2 + 𝑠𝑖𝑛 𝑠 −
2

𝑠2
−

1

4𝐴𝑠2
 

∫ 𝑅(𝑠)𝑑𝑠
∞

𝑡0

= ∞. 

            All conditions of Theorem 1 are satisfied; thus, 

the given equation is oscillatory. 

Example2: Consider the following differential equation 

(
(𝑥2(𝑡) + 2)

𝑡4(𝑥2(𝑡) + 1)
𝑥 ′(𝑡))

′

+
𝑥 ′(𝑡)

𝑡5
+ 𝑡4𝑥5(𝑡)

=
𝑥5(𝑡) 𝑐𝑜𝑠( 𝑥(𝑡))

𝑡9
, 𝑡 > 0. 

We note that 

 𝑟(𝑡) =
1

t
,  𝜓(𝑥) =

𝑥2(𝑡)+2

𝑥2(𝑡)+1
> 0 𝑎𝑛𝑑1 ≤ 𝜓(𝑥) ≤ 2, 

 for all 𝑥 ∈ ℝ, ℎ(𝑡) =
1

𝑡5, and  
𝐻(𝑡,𝑥(𝑡),𝑥′(𝑡))

𝑔(𝑥(𝑡))
=

𝑐𝑜𝑠(𝑥(𝑡))

𝑡9  

≤
1

𝑡9
= 𝑝(𝑡)𝑓𝑜𝑟𝑎𝑙𝑙  𝑡 > 0  𝑎𝑛𝑑  𝑥 ≠ 0. 

        Let 𝜌(𝑡) = 𝑡6such that 

𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 ∫
1

𝑟(𝑠)𝜌(𝑠)
∫ 𝜌(𝑢) [𝑞(𝑢) − 𝑝(𝑢)

𝑠

𝑇

𝑡

𝑇

−
ℎ2(𝑢)

4𝑐1𝑘𝑟(𝑢)
] 𝑑𝑢𝑑𝑠 

= 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 ∫
1

𝑠2
∫ 𝑢6 [𝑢4 −

1

𝑢9
−

1

4𝑐1𝑘𝑢6
] 𝑑𝑢𝑑𝑠

𝑠

𝑇

𝑡

𝑇

 

 

= 𝑙𝑖𝑚
𝑡→∞

𝑠𝑢𝑝 [
𝑠10

110
−

1

6𝑠3
+

1

8𝑐1𝑘𝑇𝑠2
+ (

𝑇11

11𝑠
+

1

2𝑠𝑇2

+
1

4𝑐1𝑘𝑠𝑇
)]

𝑇

𝑡

= ∞. 

     All conditions of Theorem2 are satisfied and hence 

each solution of the given equation is oscillatory.  

Remark1: Theorem1 and Theorem 2 extend and 

improve results of (Elabbasy & Elzeine, 2011, Remili, 

2008, and Results of Xhevair & Elisabeta, 2014). 

Remark2: Remili, (2008) has established some 

oscillation results for Eq. (1) with 𝜓(𝑥(𝑡)) = 1, ℎ(𝑡) =

1, these results required that 𝑟(𝑡) ≤ 𝑎1 and  

 

𝑙𝑖𝑚
𝑡→∞

𝑖𝑛𝑓 ∫ 𝑍(𝑠)𝑑𝑠 > −𝜆,      (𝜆 > 0)
𝑡

𝑇

 

 

for all large 𝑇; 𝑍(𝑠) = 𝑅(𝑠)[𝑞(𝑠) − 𝑝(𝑠)], which are not 

required in Theorem 2.
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5     Conclusions 

To sum up, a set of new oscillation conditions are stated 

and proved which extend and improve previous 

oscillation criteria and cover the cases which are not 

covered by known results. Further, we introduced some 

illustrative examples. Remarks were also included to 

show the evidence of our main results. 
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