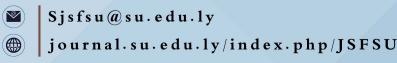


STANDARD

eISSN: 2789-858X

SCIENTIFIC JOURNAL FOR THE FACULTY OF SCIENCE - SIRTE UNIVERSITY

DOI: 10.37375/issn.2789-858X - Indexed by Crossref, USA


VOLUME 3 ISSUE 1 APRIL 2023

Bi-Annual, Peer- Reviewed, Indexed, and Open Accessed e-Journal

Legal Deposit Number@National Library (Benghazi): 990/2021

Scientific Journal for the Faculty of Science-Sirte University

Journal home page: http://journal.su.edu.ly/index.php/JSFSU/index DOI: 10.37375/issn.2789-858X

Ground Water Quality Evaluation for Drinking Purposes in Sabratha City, Libya

Wafa A. Aldeeb^{1*} and Bashir M. Aldabusi²

¹Libyan Center for Studies and Research in Environmental Science and Technology, Libya. ²Chemical Engineering Department, Engineering Faculty, Sabratha University, Libya.

DOI: <u>https://doi.org/10.37375/sjfssu.v3i1.102</u>

ABSTRACT

ARTICLE INFO:

Received: 27 November 2022

Accepted: 16 January 2023

Published: 17 April 2023

Keywords:

Canadian Council of Ministers of the Environment; Water Quality Index, Weighted Arithmetic Water Quality Index, Drinking purposes, Poor, Unsuitable.

The Water Quality Index reduces the large number of indicators used in the assessment to a simpler mathematical expression allowing easy interpretation of the monitoring data. The Canadian Council of Ministers of the Environment WQI (CCMEWQI) and the Weighted Arithmetic WQI (WAWQI) were used to assess the groundwater quality for drinking purposes in Sabratha City. Ten samples were collected from different sites of the study area. Eleven significant parameters were considered for calculating the WQI which are pH, total dissolved solids (TDS), calcium (Ca⁺⁺), magnesium (Mg⁺⁺), sodium (Na⁺), potassium (K⁺), Chloride (Cl⁻), bicarbonate (HCO₃⁻), Sulfate (SO₄⁻⁻), nitrate (NO₃⁻⁻) and Total Hardness (HD). The drinking water quality analysis by CCMEWQI and WAWQI shows that more than 60% of the samples described the groundwater quality in the study area as poor and unsuitable and cannot be used for drinking propose, only 20% of the samples was classified as suitable for direct consumption.

1 Introduction

Declining water quality has become a issue of concern due to unprecedented increase in population and rapid rate of urbanization as well as the intensification and expansion in agricultural practices. This has led to progressive and continual degradation of resources especially ground water (Adelagun et al., 2021). The Water quality is characterized on the basis of water parameters (physical, chemical, and microbiological). the human health is at risk if those values exceed acceptable limits (WHO, 2012; Libyan standard, 1992). Water quality index (WQI) is considered as the most effective technique to assess the quality of water through a single value. Several parameters are included in a mathematical equation, that expresses the overall water quality (Uddin et al., 2018; Uddin et al., 2021; Gaytán-Alarcón et al., 2022). Commonly, water quality index (WQI) is based on the following four steps: selection of the parameters, - determination of the

quality function for each parameter, - calculation of the parameter weighting values and - aggregation through mathematical equation (Sutadian *et al.*, 2018; Abbasi and Abbasi, 2012).

The present study measures drinking water quality with the application of weighted arithmetic WQI and Canadian Council of Ministers of the Environment WQI methods based on some chemical and physical parameters.

2 Materials and Methods

The study area is in the north western part of Libya in Sabratha city, and is located between latitudes $32^{\circ}43'20.30$ "N to $32^{\circ}48'24.84$ "N North and Longitude $12^{\circ}19'27.00$ "E to $12^{\circ}31'26.83$ "E, Table (1). The collected ten (10) boreholes of groundwater samples were selected randomly from both private and public water sources.

Longitude

12°28'36.04"E

Well	Latitudes	Longitude
1	32°47'59.41"N	12°26'50.93"E
2	32°44'15.63"N	12°25'52.43"E
3	32°43'20.30"N	12°19'27.00"E
4	32°43'21.50"N	12°19'27.77"E
5	32°44'4.81"N	12°29'15.85"E

At each borehole location, the sample bottles were

washed and rinsed thoroughly with the sample water

before being sampled. The boreholes were allowed to

flow for about 5 minutes to ensure stable conditions

before samples were collected. The water samples were

analyzed for different drinking and agricultural

parameters which include pH, electrical conductivity

(EC), total dissolved solids (TDS), concentration of

cations such as calcium, magnesium, sodium and

potassium and concentration of anions such as Chloride, bicarbonate, Sulfate and nitrate. The concentration of Sodium and Potassium were measured using Flame photometer. The total hardness calcium

and magnesium were determined by EDTA titrimetric

method. The concentration of Chloride was determined

Table (1): Location of the study area.

Well

6

Latitudes

32°47'13.11"N

with silver nitrate titration. The concentrations of Carbonate and bicarbonate were determined by sulfuric acid. Whereas, the concentrations of sulfate and nitrate were determined using spectro-photometer. The Salinity refers to the amount of total dissolved solids (TDS) in the water and is frequently measured by electrical conductivity (EC). Waters with higher TDS concentrations will be relatively conductive. The general formula adopted to calculate the TDS (Kelly, 1946) is

$$TDS\left(\frac{mg}{L}\right) = 0.64 \cdot EC\left[\frac{\mu S}{cm}\right] \dots \dots \dots (1)$$

The statistical parameters and the major ionconcentrations (mg/L) in capering with the Libyan standard (1992), are tabulated in Table (2).

Well	pН	TDS	Ca ²⁺	Na ⁺	Mg ²⁺	K+	HCO ₃	S0 ₄ ²⁻	NO_3^-	Cl-	HD
limit	7.5	1000	200	200	150	40	200	250	45	250	500
1	6.91	5094	737	862	149	46	129	731	13.3	2480	2453
2	6.86	8928	1291	1511	516	80	227	1599	23.2	4345	5343
3	7.52	1416	187	259	38	11.6	103	186	3.4	629	623
4	6.82	4563	422	796	286	23.8	173	843	7.4	2122	2228
5	6.83	8243	762	1438	261	45.2	131	1599	13.4	3833	2975
6	7.15	1766	163	308	110.6	7.9	128	281	2.9	822	861
7	7.3	6637	613	1158	415.7	36	106	1275	10.8	3086	3237
8	7.2	1670	154.5	291.5	104.6	7.3	126.6	259	2.7	777	815
9	7.2	1577	236	173	71.4	8	204	560	28.2	297	882
10	7.3	835	118	118.5	23.8	7.1	132	113	58.8	264	392

Table 2: Groundwater chemical analyses (mg/L).

• Water Quality Index Methods

The water quality index reduces the bulk number of parameters used in an assessment and provides a single value of multiple water quality parameters into a mathematical equation that rates the health of water quality with number (Brown *et al.*, 1970). Most of the models employed eight to eleven water quality parameters. In this study, eleven important parameters were chosen to measures drinking water quality with the application of Canadian Council of Ministers of the Environment WQI (CCMEWQI) and Weighted Arithmetic WQI (WAWQI).

• Canadian Council of Ministers of the Environmental WQI

This method was formulated by the CCME (CCME, 1999; Khan, 2003). The calculation of CCME WQI can be obtained by using the following relation:

$$WQI_{CCME} = 100 - \left[\frac{\sqrt{F_1^2 + F_2^2 + F_3^2}}{1.732}\right] \dots \dots \dots \dots (2)$$

F1: termed the 'scope', this is the percentage of the total parameters that do not meet with the specified objectives. It is expressed as:

$$F_{1} = \left[\frac{Number of failed variables (NFV)}{Total number of variables (TNV)}\right] x100..(3)$$

 $F_2 \mbox{ represents the percentage of } \mbox{ individual tests that do not meet standard.}$

The number of times by which an individual concentration is greater or less than the objective is termed an "excursion" and is expressed as follows:

When the test value must not exceed the objective

$$excursion_{i} = \frac{Failed \ test \ value_{i}}{Objective_{i}} - 1 \dots \dots \dots (7a)$$

For the other case when the test value must not fall below the objective

$$excursion_{i} = \frac{Objective_{i}}{Failed test value_{i}} - 1 \dots (7b)$$

• Weighted Arithmetic Water Quality Index

Weighted arithmetic water quality index (WAWQI) method classified the water quality according to the degree of purity by using the most commonly measured water quality variables (Yisa and Jimoh, 2010; Tyagi *et al.*, 2014; Aldeeb and Algeidi, 2021). The method has been widely used by many scientists and the calculation of WQI was obtained by using the following equation:

$$WQI = \frac{\sum Q_n \cdot W_n}{\sum W_n} \dots \dots \dots \dots \dots \dots \dots \dots \dots (8)$$

The quality rating scale Q_n for each parameter is calculated by using this expression:

$$Q_{n} = \left[\frac{V_{n} - V_{0}}{S_{n} - V_{0}}\right] \cdot 100 \dots \dots \dots \dots \dots (9)$$

- V_n Estimated concentration of n^{th} parameter in the analyzed water
- V_0 Ideal value of this parameter in pure water = 0 (except for pH =7.0)

S_n Recommended standard value of nth parameter

The unit weight W_n for each water quality parameter is calculated by using the following formula:

Different levels of water quality index and their respective water quality status were given in Table (3). Various parameters with their standards and recommended calculation were summarized in Table (4). The rating of water quality according to this WQI is given below Table (1).

Table	(3):	Water	Quality	Rating.
-------	------	-------	---------	---------

WQI _{WA} Value	Rating	Grading			
0-25	Excellent	А			
26-50	Good	В			
51-75	Moderate	С			
76-100	Poor	D			
Above 100	Unsuitable	Е			
(Aldeeb and Algeidi, 2021; Khan, 2003)					

WQI _{CCME} Value	Rating
95-100	Excellent
80-94	Good
65-79	Fair
45-64	Marginal
00- 44	Poor

3 Results and Discussion

Water sample collected from Ten (10) different locations of Sabratha were tested to determine the Water Quality Index (WQI). To calculate desired WQI, each parameter was multiplied by weightage factors according to their relative importance in determining quality index as prescribed in WA and CCME index.

• Canadian WQI (CCMEWQI)

Calculation for Well 1 as example, in this case there is only one test for each Well. F1 represents the percentage of variables that do not meet their Objective or standard (failed variables), relative to the total number of variables measured and F2 represents the percentage of individual tests that do not meet standard

$$F_{1} = \left[\frac{NFV = 7}{TNV = 10}\right] x \ 100 = 70$$
$$F_{2} = \left[\frac{NFT = 7}{TNT = 10}\right] x \ 100 = 70$$

The test value must not exceed the objective

$$excursion_{TDS} = \frac{Failed \ test \ value_i}{Objective_i} - 1$$
$$= \frac{5094.4}{1000} - 1 = 4.0944$$

$$nse = \frac{\sum_{1}^{n} excursion_{i}}{Total number of tests} = \frac{21.08}{10} = 2.108$$

$$F_3 = \frac{nse}{0.01 \cdot nse + 0.01} = \frac{2.108}{0.01 x 2.108 + 0.01} = 67.83$$

$$WQI_{CCME} = 100 - \left[\frac{\sqrt{70^2 + 70^2 + 67.83^2}}{1.732}\right] = 30.7$$

Well	pН	TDS	Ca ²⁺	Na ⁺	Mg ²⁺	К+	HCO ₃	SO_{4}^{2-}	NO_3^-	Cl-	HD
limit	7.5	1000	200	200	150	40	200	250	45	250	500
1	6.91	5094	737	862	149	46	129	731	13.3	2480	2453

• Weighted Arithmetic WQI (WAWQI)

Calculation for Well 1 as example, the Proportionality constant K of 10 standard parameter S_n :

$$K = \frac{1}{\sum \frac{1}{S_n}} = \frac{1}{0.213222} = 4.689943$$

The quality rating scale Q_n and the unit weight W_n for each parameter were calculated and summarized in Table (4).

parameter	standard	experimental	W _n	Q_n	$W_n \cdot Q_n$
pН	7.5	6.91	0.625326	18.00	11.256
TDS	1000	5,094.4	0.00469	509.4	2.389
Ca ⁺⁺	200	737	0.02345	368.5	8.641
Na ⁺	200	862	0.02345	431	10.106
Mg ⁺⁺	150	149	0.03127	99.3	3.106
K ⁺	40	46	0.11725	115	13.484
HCO ₃	200	129.3	0.02345	64.65	1.560
SO ₄	250	731.3	0.01876	292.5	5.488
NO ₃	45	13.3	0.10422	29.56	3.080
Cl-	250	2,480	0.01876	992	18.609
HD	500	2,453	0.00938	490.7	4.603
WQI					82.3

Analog calculations for the other wells for both, CCMEWQI and WAWQI are summarized in the Table (5). Different levels of water quality index ($WQI_{CCME} \& WQI_{WA}$) and their respective water quality condition were given in Table (3). The drinking water quality analysis by CCMEWQI and WAWQI

shows that more than 60% of the samples described the groundwater quality in the study area as poor to unsuitable and cannot be used for drinking propose, only 20% of the samples was classified as good for direct consumption.

Well	CCME WQI	Rating		Well
1	30.7	Poor		1
2	12.6	Poor		2
3	65.7	Fair		3
4	24.8	Poor		4
5	20.4	Poor		5
6	56.3	Marginal		6
7	28.4	Poor		7
8	56.8	Marginal		8
9	49.9	Marginal		9
10	83.5	Good		10

Table (5): Summarized WQIs for the 10 wells.

AW Rating Grading WQI 82.3 Poor D 151.4 Unsuitable Ε 84.4 Poor D 82.0 D Poor 120.6 Unsuitable Ε 41.8 Good В 123.2 Unsuitable Ε 46.8 Good В С 51.4 Moderate 62.0 Moderate С

4 Conclusions

The groundwater of the study area in Sabratha region were evaluated for their chemical composition and suitability for drinking purpose using the water quality indices (CCMEWQI & WA). Groundwater samples were collected from ten (10) boreholes in Sabratha Libya at random. The drinking water quality analysis by WAWQI and CCMEWQI shows that 50% of samples described the groundwater quality in the study area as poor to unsuitable and 40% of samples described it as good to moderate water and can be used for direct consumption.

References

- Abbasi T., Abbasi S.A.; Water-Quality Indices Water Quality Indices, Elsevier (2012), pp. 353-356, 10.1016/B978-0-444-54304-2.00016-6.
- Adelagun, Ruth Olubukola Ajoke, Etim, Emmanuel Edet and Godwin, Oko Emmanuel, Assessment of Water from Different Sources in Nigeria, Promising Techniques for Wastewater Treatment and Water Quality Assessment, 8, (2021), ISBN978-1-83881-901-9, DOI10.5772/intechopen.87732.

- Aldeeb W., Algeidi O.; Mitrid Groundwater Evaluation for Irrigation, Northern West Libya, Libyan Journal of Ecological & Environmental Sciences and Technology (LJEEST), Vol. 3 No. 2 Dec, 2021.
- Brown, R.M., McClelland, N.I., Deininger, R.A. and Tozer, R.G., (1970) "Water quality index-do we dare?", Water Sewage Works, 117(10). 339-343.
- CCME Canadian Council of Ministers of the Environment, "Canadian water quality guidelines for the protection of aquatic life: CCME Water Quality Index 1.0, Technical Report," In: Canadian environmental quality guidelines, 1999, Canadian Council of Ministers of the Environment, Winnipeg, Technical, 2001.
- Gaytán-Alarcón; Patricia Ana; González-Elizondo, M. Socorro; Sánchez-Ortíz, Eduardo & Alarcón-Herrera, María Teresa, Comparative assessment of water quality indices—a case study to evaluate water quality for drinking water supply and irrigation in Northern Mexico, Environmental Monitoring and Assessment, Volume 194, Article number: 588 (2022).
- Kelly, WP (1946), Permissible composition and concentration for irrigation waters. In: Proceedings of ASC, p: 607.

- Khan, A. A., Paterson, R., and Khan, H., "Modification and application of the CCME WQI for the communication of drinking water quality data in newfoundland and labrador," in 38th, Central Symposium on Water Quality Research, Canadian Association on Water Quality (February 10–11, 2003), 2003, vol. 867.
- Libyan National Center for Standardization & Metrology and Ministry of Commerce (LNCS&MC) "Libyan standard legislation for drinking water" No. 82, (1992).
- Sutadian A.D., Muttil N., Yilmaz A.G., Perera B.J.C.; Development of a water quality index for rivers in West Java Province; Indonesia. Ecol. Indic., 85 (2018), pp. 966 982, <u>10.1016/j.ecolind.2017.1</u> <u>1.049</u>.
- Tyagi S, Singh P, Sharma B, Singh R. Assessment of water quality for drinking purpose in District Pauri of Uttarkhand India. Appl Ecol Environ Sci. 2014; 2(4):94–9.
- Uddin, M.G.; Moniruzzaman, M.; Quader, M.A.; Hasan, M.A.; (2018), Spatial variability in the distribution of trace metals in groundwater around the Rooppur nuclear power plant in Ishwardi, Bangladesh. Groundw. Sustain. Dev. <u>https://doi.org/10.1016/j.gsd.2018.06.002</u>.
- Uddin, Md. Galal, Nash, Stephen, Olbert, Agnieszka I., A review of water quality index models and their use for assessing surface water quality, Environmental Science, Ecological Indicators 122 (2021) 107218.
- World Health Organization (WHO). Guideline for drinking water quality. 2012.
- Yisa J, Jimoh T. Analytical studies on water quality index of river Landzu. Am J Appl Sci. 2010;7:453–8.

Scientific Journal For the Faculty of Science – Sirte University

usar

Sjsfsu@su.edu.ly

journal.su.edu.ly/index.php/JSFSU

